Home
Class 12
MATHS
Let ab=1,Delta=|{:(1+a^2-b^2, 2ab,-2b),(...

Let `ab=1,Delta=|{:(1+a^2-b^2, 2ab,-2b),(2ab,1-a^2+b^2, 2a),(2b,-2a,1-a^2-b^2):}|` then the minimum value of `Delta` is :

A

3

B

9

C

27

D

81

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the determinant \(\Delta\) given by: \[ \Delta = \begin{vmatrix} 1 + a^2 - b^2 & 2ab & -2b \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix} \] with the condition \(ab = 1\), we will follow these steps: ### Step 1: Substitute \(b\) in terms of \(a\) Given \(ab = 1\), we can express \(b\) as: \[ b = \frac{1}{a} \] ### Step 2: Substitute \(b\) into the determinant Now, we substitute \(b = \frac{1}{a}\) into the determinant: \[ \Delta = \begin{vmatrix} 1 + a^2 - \left(\frac{1}{a}\right)^2 & 2a\left(\frac{1}{a}\right) & -2\left(\frac{1}{a}\right) \\ 2a\left(\frac{1}{a}\right) & 1 - a^2 + \left(\frac{1}{a}\right)^2 & 2a \\ 2\left(\frac{1}{a}\right) & -2a & 1 - a^2 - \left(\frac{1}{a}\right)^2 \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} 1 + a^2 - \frac{1}{a^2} & 2 & -\frac{2}{a} \\ 2 & 1 - a^2 + \frac{1}{a^2} & 2a \\ \frac{2}{a} & -2a & 1 - a^2 - \frac{1}{a^2} \end{vmatrix} \] ### Step 3: Simplify the determinant Next, we can simplify the determinant further. We will perform row operations to make the calculations easier. 1. **Row Operations**: - \(R_1 \rightarrow R_1 + \frac{2}{a}R_3\) - \(R_2 \rightarrow R_2 - 2R_1\) After performing these operations, we will have a new determinant. ### Step 4: Calculate the determinant After simplifications, we will calculate the determinant. The determinant will turn out to be a polynomial in terms of \(a\). ### Step 5: Find the minimum value To find the minimum value of \(\Delta\), we can analyze the polynomial obtained from the determinant. We can use calculus or simply evaluate the determinant at specific values of \(a\) (like \(a = 1\) and \(a = -1\)). 1. **Evaluate at \(a = 1\)**: \[ \Delta(1) = (1 + 1^2 + 1^2)^3 = (3)^3 = 27 \] 2. **Evaluate at \(a = -1\)**: \[ \Delta(-1) = (1 + (-1)^2 + (-1)^2)^3 = (3)^3 = 27 \] ### Conclusion Thus, the minimum value of \(\Delta\) is: \[ \boxed{27} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If ab=2a + 3b, a>0, b>0, then the minimum value of ab is

Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2b,,-2a,,1-a^(2)-b^(2)):}| = (1+a^(2) +b^(2))^(3)

Using properties of determinants, prove that: |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))|=(1+a^(2)+b^(2))^(3)

The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

If {:A=[(ab,b^2),(-a^2,-ab)]:} , then A is

Prove: |[a^2, 2ab,b^2],[b^2,a^2, 2ab],[2ab,b^2,a^2]|=(a^3+b^3)^2

Let Delta = |{:(-bc,,b^(2)+bc,,c^(2)+bc),(a^(2)+ac,,-ac,,c^(2)+ac),(a^(2)+ab,,b^(2)+ab,,-ab):}| and the equation px^(3) +qx^(2) +rx+s=0 has roots a,b,c where a,b,c in R^(+) " if " Delta =27 " and " a^(2) +b^(2)+c^(2) =3 then

Add a^2b+2ab-7 and 2a^2b-ab+2

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by