Home
Class 12
MATHS
If |{:((x+1),(x+1)^2,(x+1)^3),((x+2),(x+...

If `|{:((x+1),(x+1)^2,(x+1)^3),((x+2),(x+2)^2 , (x+2)^3),((x+3),(x+3)^2, (x+3)^3):}|` is expressed as a polynomial in x, then the term independent of x is :

A

0

B

2

C

12

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} x+1 & (x+1)^2 & (x+1)^3 \\ x+2 & (x+2)^2 & (x+2)^3 \\ x+3 & (x+3)^2 & (x+3)^3 \end{vmatrix} \] we will expand it step by step. ### Step 1: Write the Determinant We start with the determinant as given: \[ D = \begin{vmatrix} x+1 & (x+1)^2 & (x+1)^3 \\ x+2 & (x+2)^2 & (x+2)^3 \\ x+3 & (x+3)^2 & (x+3)^3 \end{vmatrix} \] ### Step 2: Expand the Determinant We can expand this determinant using the first row: \[ D = (x+1) \begin{vmatrix} (x+2)^2 & (x+2)^3 \\ (x+3)^2 & (x+3)^3 \end{vmatrix} - (x+1)^2 \begin{vmatrix} x+2 & (x+2)^3 \\ x+3 & (x+3)^3 \end{vmatrix} + (x+1)^3 \begin{vmatrix} x+2 & (x+2)^2 \\ x+3 & (x+3)^2 \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants Now, we calculate each of the 2x2 determinants. 1. For the first determinant: \[ \begin{vmatrix} (x+2)^2 & (x+2)^3 \\ (x+3)^2 & (x+3)^3 \end{vmatrix} = (x+2)^2(x+3)^3 - (x+2)^3(x+3)^2 \] Factoring out common terms: \[ = (x+2)^2(x+3)^2 \left( (x+3) - (x+2) \right) = (x+2)^2(x+3)^2 \] 2. For the second determinant: \[ \begin{vmatrix} x+2 & (x+2)^3 \\ x+3 & (x+3)^3 \end{vmatrix} = (x+2)(x+3)^3 - (x+2)^3(x+3) \] Factoring out common terms: \[ = (x+2)(x+3) \left( (x+3)^2 - (x+2)^2 \right) = (x+2)(x+3)(2x + 5) \] 3. For the third determinant: \[ \begin{vmatrix} x+2 & (x+2)^2 \\ x+3 & (x+3)^2 \end{vmatrix} = (x+2)(x+3)^2 - (x+2)^2(x+3) \] Factoring out common terms: \[ = (x+2)(x+3) \left( (x+3) - (x+2) \right) = (x+2)(x+3) \] ### Step 4: Substitute Back into the Determinant Now substituting back into the expression for \(D\): \[ D = (x+1)(x+2)^2(x+3)^2 - (x+1)^2(x+2)(x+3)(2x + 5) + (x+1)^3(x+2)(x+3) \] ### Step 5: Collect Terms Now we can collect terms and simplify. The polynomial will be expressed in terms of powers of \(x\). ### Step 6: Identify the Constant Term To find the term independent of \(x\), we can evaluate \(D\) at specific values of \(x\) that simplify calculations. A common choice is to evaluate at \(x = 0\): \[ D(0) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & 8 \\ 3 & 9 & 27 \end{vmatrix} \] Calculating this determinant gives: \[ D(0) = 1 \cdot (4 \cdot 27 - 8 \cdot 9) - 1 \cdot (2 \cdot 27 - 8 \cdot 3) + 1 \cdot (2 \cdot 9 - 4 \cdot 3) \] Calculating each term: 1. \(4 \cdot 27 - 8 \cdot 9 = 108 - 72 = 36\) 2. \(2 \cdot 27 - 8 \cdot 3 = 54 - 24 = 30\) 3. \(2 \cdot 9 - 4 \cdot 3 = 18 - 12 = 6\) Putting it all together: \[ D(0) = 1 \cdot 36 - 1 \cdot 30 + 1 \cdot 6 = 36 - 30 + 6 = 12 \] ### Final Answer Thus, the term independent of \(x\) is: \[ \boxed{12} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Find the term independent of x in (2x^2 - 3/x)^9

(x)/(x+1)+(1)/(2)((x)/(x+1))^(2)+(1)/(3)((x)/(x+1))^(3)+....=

If f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x^2, (x+1)^3] , [x,(x+1)^2, (x+2)^3]| then coefficient of x in f(x) is

Find the term independent of x in ((3x^(2))/(2)-(1)/(3x))^(9)

The term independent of x in (2x^(1//2)-3x^(-1//3))^20

Value of |{:(1+x_(1),,1+x_(1)x,,1+x_(1)x^(2)),(1+x_(2),,1+x_(2)x,,1+x_(2)x^(2)),(1+x_(3),,1+x_(3)x,,1+x_(3)x^(2)):}| depends upon

If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1 , find x^(3)- (1)/(x^(3))

the term independent of x in (1+x +2x^2)((3x^2)/2-1/(3x))^9 is

Find the term independent of x in the expansion of (3/2x^2-1/(3x))^6 .

The ratio of the coefficient of x^(3) to the term independent of x in (2x+1/(x^(2)))^(12) is