Home
Class 12
MATHS
If A,B,C are the angles of triangle ABC,...

If A,B,C are the angles of triangle ABC, then the minimum value of `|{:(-1,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}|` is equal to :

A

0

B

`-1`

C

1

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the determinant \[ D = \begin{vmatrix} -1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{vmatrix}, \] where \(A, B, C\) are the angles of triangle \(ABC\), we will follow these steps: ### Step 1: Apply a Column Transformation We will perform a column transformation by replacing the first column with \(A \cdot C_1 + B \cdot C_2 + C \cdot C_3\). This means we will multiply each column by the corresponding angle and sum them up. \[ D = \begin{vmatrix} -1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{vmatrix} \] ### Step 2: Simplify the Determinant After applying the column transformation, we will simplify the determinant. The first column will become: \[ A \cdot (-1) + B \cdot \cos C + C \cdot \cos B, \] \[ B \cdot \cos C + C \cdot \cos B - A, \] \[ A \cdot \cos C + C \cdot \cos A - B, \] \[ A \cdot \cos B + B \cdot \cos A - C. \] ### Step 3: Use the Projection Theorem Using the projection theorem for triangle \(ABC\), we have: \[ A = B \cos C + C \cos B, \] \[ B = A \cos C + C \cos A, \] \[ C = A \cos B + B \cos A. \] ### Step 4: Substitute Values Substituting these values into the determinant, we will find that the first column becomes: \[ 0, 0, 0. \] ### Step 5: Evaluate the Determinant Since the first column consists entirely of zeros, the determinant evaluates to zero: \[ D = 0. \] ### Conclusion Thus, the minimum value of the determinant is \[ \boxed{0}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If A, B and C denote the angles of a triangle, then Delta = |(-1,cos C,cos B),(cos C,-1,cos A),(cos B,cos A,-2)| is independent of

If A , Ba n dC are the angels of a triangle, show that |-1+cos B cos C+cos B cos B cos C+cos A-1+cos A cos A-1+cos B-1+cos A-1|=0

If A , Ba n dC are the angels of a triangle, show that |-1+cos B cos C+cos B cos B cos C+cos A-1+cos A cos A-1+cos B-1+cos A-1|=0

In triangle ABC, /_C = (2pi)/3 then the value of cos^2 A + cos^2 B - cos A.cos B is equal

If A,B,C are the angles of a triangal ,prove that : cos A +cos B + cos C = 1+r/R

If A ,\ B ,\ C are the angles of a triangle, prove that : cos A+cos B+cos C=1+r/Rdot

For all, x in[0,(pi)/(2)] ,the minimum value of cos(cos x) A) 0 B) cos1 C) -cos1 D) 1

Let A,B,C be the three angles such that A+B+C=pi , tan A.tan B=2 , then find the value of (cos A cos B)/(cos C)

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

If A, B, C are the angles of a right angled triangle, then (cos^2A+ cos^2B+ cos^2C) equals