Home
Class 12
MATHS
The system of homogeneous equation lambd...

The system of homogeneous equation `lambdax+(lambda+1)y +(lambda-1)z=0, (lambda+1)x+lambday+(lambda+2)z=0, (lambda-1)x+(lambda+2)y + lambdaz=0` has non-trivial solution for :

A

1.exactly three real value of `lambda`

B

2.exactly two real values of `lambda`

C

3.exactly three real value of `lambda`

D

4.infinitely many real value of `lambda`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the values of \(\lambda\) for which the given system of homogeneous equations has non-trivial solutions, we will follow these steps: ### Step 1: Write the system of equations in matrix form The given system of equations is: 1. \(\lambda x + (\lambda + 1)y + (\lambda - 1)z = 0\) 2. \((\lambda + 1)x + \lambda y + (\lambda + 2)z = 0\) 3. \((\lambda - 1)x + (\lambda + 2)y + \lambda z = 0\) We can represent this system in matrix form as: \[ \begin{bmatrix} \lambda & \lambda + 1 & \lambda - 1 \\ \lambda + 1 & \lambda & \lambda + 2 \\ \lambda - 1 & \lambda + 2 & \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] ### Step 2: Set up the determinant for the coefficient matrix For the system to have non-trivial solutions, the determinant of the coefficient matrix must be zero: \[ \Delta = \begin{vmatrix} \lambda & \lambda + 1 & \lambda - 1 \\ \lambda + 1 & \lambda & \lambda + 2 \\ \lambda - 1 & \lambda + 2 & \lambda \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant We will calculate the determinant \(\Delta\) using cofactor expansion along the first row: \[ \Delta = \lambda \begin{vmatrix} \lambda & \lambda + 2 \\ \lambda + 2 & \lambda \end{vmatrix} - (\lambda + 1) \begin{vmatrix} \lambda + 1 & \lambda + 2 \\ \lambda - 1 & \lambda \end{vmatrix} + (\lambda - 1) \begin{vmatrix} \lambda + 1 & \lambda \\ \lambda - 1 & \lambda + 2 \end{vmatrix} \] Calculating the minors: 1. \(\begin{vmatrix} \lambda & \lambda + 2 \\ \lambda + 2 & \lambda \end{vmatrix} = \lambda^2 - (\lambda + 2)(\lambda + 2) = \lambda^2 - (\lambda^2 + 4\lambda + 4) = -4\lambda - 4\) 2. \(\begin{vmatrix} \lambda + 1 & \lambda + 2 \\ \lambda - 1 & \lambda \end{vmatrix} = (\lambda + 1)\lambda - (\lambda + 2)(\lambda - 1) = \lambda^2 + \lambda - (\lambda^2 - \lambda + 2) = 2\lambda - 2\) 3. \(\begin{vmatrix} \lambda + 1 & \lambda \\ \lambda - 1 & \lambda + 2 \end{vmatrix} = (\lambda + 1)(\lambda + 2) - \lambda(\lambda - 1) = \lambda^2 + 3\lambda + 2 - (\lambda^2 - \lambda) = 4\lambda + 2\) Putting it all together: \[ \Delta = \lambda(-4\lambda - 4) - (\lambda + 1)(2\lambda - 2) + (\lambda - 1)(4\lambda + 2) \] ### Step 4: Simplify the determinant expression Expanding and simplifying: \[ \Delta = -4\lambda^2 - 4\lambda - (2\lambda^2 - 2 + 2\lambda - 2) + (4\lambda^2 + 2\lambda - 4\lambda - 2) \] Combine like terms: \[ \Delta = -4\lambda^2 - 4\lambda - 2\lambda^2 + 2 + 4\lambda^2 - 2 = 0 \] This simplifies to: \[ -2\lambda^2 - 4\lambda = 0 \] ### Step 5: Factor the determinant Factoring out \(-2\lambda\): \[ -2\lambda(\lambda + 2) = 0 \] ### Step 6: Solve for \(\lambda\) Setting the factors equal to zero gives: 1. \(-2\lambda = 0 \Rightarrow \lambda = 0\) 2. \(\lambda + 2 = 0 \Rightarrow \lambda = -2\) ### Conclusion The values of \(\lambda\) for which the system has non-trivial solutions are \(\lambda = 0\) and \(\lambda = -2\). Thus, there are exactly **two real values** of \(\lambda\).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Find all values of lambda for which the (lambda-1)x+(3lambda+1)y+2lambdaz=0(lambda-1)x+(4lambda-2)y+(lambda+3)z=0 2x+(3lambda+1)y+3(lambda-1)z=0 possess non-trivial solution and find the ratios x:y:z, where lambda has the smallest of these value.

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

A system of equations lambdax +y +z =1,x+lambday+z=lambda, x + y + lambdaz = lambda^2 have no solution then value of lambda is

The values of theta , lambda for which the following equations sinthetax-costhetay+(lambda+1)z=0 , costhetax+sinthetay-lambdaz=0 , lambdax+(lambda+1)y+costhetaz=0 have non trivial solution, is

The set of all values of lambda for which the system of linear equations x - 2y - 2z = lambdax x + 2y + z = lambday -x -y = lambdaz has a non-trivial solution

Let L_(1) -= ax+by+a root3 (b) = 0 and L_(2) -= bx - ay + b root3 (a) = 0 be two straight lines . The equations of the bisectors of the angle formed by the foci whose equations are lambda_(1)L_(1)-lambda_(2)L_(2)=0 and lambda _(1) l_(1) + lambda_(2) = 0 , lambda_(1) and lambda_(2) being non - zero real numbers ,are given by

The system of linear equations x+lambday-z=0 , lambdax-y-z=0 , x+y-lambdaz=0 has a non-trivial solution for : (1) infinitely many values of lambda . (2) exactly one value of lambda . (3) exactly two values of lambda . (4) exactly three values of lambda .

The system of linear equations x+lambday-z=0 lambdax-y-z=0 x+y-lambdaz=0 has a non-trivial solution for : (1) infinitely many values of lambda . (2) exactly one value of lambda . (3) exactly two values of lambda . (4) exactly three values of lambda .

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

Two particle are moving perpendicular to each with de-Broglie wave length lambda_(1) and lambda_(2) . If they collide and stick then the de-Broglie wave length of system after collision is : (A) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (B) lambda = (lambda_(1))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (C) lambda = (sqrt(lambda_(1)^(2) + lambda_(2)^(2)))/(lambda_(2)) (D) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1) + lambda_(2)))