Home
Class 12
MATHS
If |{:(1+cos^2 theta, sin^2 theta, 2sqrt...


If `|{:(1+cos^2 theta, sin^2 theta, 2sqrt3tantheta),(cos^2 theta, 1+sin^2 theta, 2sqrt3tan theta),(cos^2 theta, sin^2 theta, 1+2sqrt3 tan theta):}|`=0 then `theta` may be :
i) π/6
ii) 5π/6
iii) 7π/6
iv) 11π/6

A

`pi/6`

B

`(5pi)/6`

C

`(7pi)/6`

D

`(11pi)/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant and find the values of \( \theta \) for which the determinant equals zero, we will follow these steps: Given the determinant: \[ D = \begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 2\sqrt{3} \tan \theta \end{vmatrix} \] ### Step 1: Apply Row Operations We will perform the operation \( R_2 \leftarrow R_2 - R_3 \): \[ D = \begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta - \cos^2 \theta & (1 + \sin^2 \theta - \sin^2 \theta) & (2\sqrt{3} \tan \theta - 2\sqrt{3} \tan \theta) \\ \cos^2 \theta & \sin^2 \theta & 1 + 2\sqrt{3} \tan \theta \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 2\sqrt{3} \tan \theta \\ 0 & 1 & 0 \\ \cos^2 \theta & \sin^2 \theta & 1 + 2\sqrt{3} \tan \theta \end{vmatrix} \] ### Step 2: Expand the Determinant Now, we can expand the determinant along the second row: \[ D = 1 \cdot \begin{vmatrix} 1 + \cos^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta & 1 + 2\sqrt{3} \tan \theta \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinant Calculating the 2x2 determinant: \[ = (1 + \cos^2 \theta)(1 + 2\sqrt{3} \tan \theta) - (2\sqrt{3} \tan \theta)(\cos^2 \theta) \] Expanding this gives: \[ = 1 + 2\sqrt{3} \tan \theta + \cos^2 \theta + 2\sqrt{3} \cos^2 \theta \tan \theta - 2\sqrt{3} \cos^2 \theta \tan \theta \] This simplifies to: \[ = 1 + 2\sqrt{3} \tan \theta + \cos^2 \theta \] ### Step 4: Set the Determinant to Zero Now, we set the determinant to zero: \[ 1 + 2\sqrt{3} \tan \theta + \cos^2 \theta = 0 \] ### Step 5: Solve for \(\tan \theta\) Rearranging gives: \[ 2\sqrt{3} \tan \theta = -1 - \cos^2 \theta \] Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ 2\sqrt{3} \tan \theta = -1 - (1 - \sin^2 \theta) = -2 + \sin^2 \theta \] Thus, \[ \tan \theta = \frac{-2 + \sin^2 \theta}{2\sqrt{3}} \] ### Step 6: Find Values of \(\theta\) To find specific values of \( \theta \), we can use the known values of \( \tan \theta \): From the equation \( \tan \theta = -\frac{1}{2\sqrt{3}} \), we find: \[ \theta = \tan^{-1}\left(-\frac{1}{2\sqrt{3}}\right) \] This corresponds to angles in the second and fourth quadrants: - \( \theta = \frac{5\pi}{6} \) (second quadrant) - \( \theta = \frac{11\pi}{6} \) (fourth quadrant) ### Final Answer Thus, the values of \( \theta \) for which the determinant is zero are: **Options: ii) \( \frac{5\pi}{6} \) and iv) \( \frac{11\pi}{6} \)**.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

cos theta+sqrt(3)sin theta=2

cos theta sqrt(1-sin^(2)theta)=

If |(1+sin^2 theta,sin^2 theta,sin^2 theta),(cos^2 theta,1+cos^2 theta,cos^2 theta),(4sin 4 theta,4sin4theta,1+4sin4theta)|=0, then ... sin 4theta equal to ....

If cos theta + sin theta =sqrt(2) cos theta prove that cos theta -sin theta =sqrt(2) sin theta

Solve sin^2 theta tan theta+cos^2 theta cot theta-sin 2 theta=1+tan theta+cot theta

If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0 , and theta in (0,(pi)/(3)) , then value of theta is

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

The value of Delta=|(1,sin 3theta, sin^(3)theta),(2cos theta, sin 6 theta, sin^(3)2 theta),(4cos^(2)theta-1,sin 9 theta, sin^(3)3theta)| equal to

Prove that : (sin 5theta - 2 sin 3theta + sin theta)/(cos 5theta -cos theta) = tan theta