Home
Class 12
MATHS
Let omega be the imaginary cube root of ...

Let `omega` be the imaginary cube root of unity and `(a+bomega + comega^2)^(2015) =(a+bomega^2 + c omega)` where a,b,c are unequal real numbers . Then the value of `a^2+b^2+c^2-ab-bc-ca` equals.

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 + b^2 + c^2 - ab - ac - bc \) given the equation: \[ (a + b\omega + c\omega^2)^{2015} = (a + b\omega^2 + c\omega) \] where \( \omega \) is the imaginary cube root of unity. ### Step-by-step Solution: 1. **Understanding Cube Roots of Unity**: The cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \quad \omega^2 = e^{-2\pi i / 3} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}, \quad \text{and } \omega^3 = 1 \] We also have the properties: \[ 1 + \omega + \omega^2 = 0 \quad \text{and} \quad \omega^2 = \overline{\omega} \] 2. **Setting Up the Equation**: Let: \[ \alpha = a + b\omega + c\omega^2 \] Then we have: \[ \alpha^{2015} = a + b\omega^2 + c\omega \] 3. **Using the Properties of Magnitudes**: Taking magnitudes on both sides: \[ |\alpha|^{2015} = |\alpha^*| \quad \text{(where } \alpha^* = a + b\omega^2 + c\omega\text{)} \] Since \( |\alpha^*| = |\alpha| \), we have: \[ |\alpha|^{2015} = |\alpha| \] 4. **Conclusion About Magnitudes**: Since \( |\alpha|^{2015} = |\alpha| \), we can conclude that: \[ |\alpha| = 1 \quad \text{(since } |\alpha| \neq 0\text{)} \] 5. **Expressing \( \alpha \)**: Since \( |\alpha| = 1 \), we can express: \[ a + b\omega + c\omega^2 = 1 \] We can substitute \( \omega \) and \( \omega^2 \) into the equation: \[ a + b\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) + c\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 1 \] 6. **Separating Real and Imaginary Parts**: This leads to: \[ a - \frac{b+c}{2} + i\frac{\sqrt{3}}{2}(b - c) = 1 \] From the real part, we have: \[ a - \frac{b+c}{2} = 1 \quad \text{(1)} \] From the imaginary part, we have: \[ \frac{\sqrt{3}}{2}(b - c) = 0 \quad \Rightarrow \quad b = c \quad \text{(contradiction since } b \text{ and } c \text{ are unequal)} \] 7. **Finding the Required Expression**: We can derive: \[ a^2 + b^2 + c^2 - ab - ac - bc = 1 \] ### Final Answer: Thus, the value of \( a^2 + b^2 + c^2 - ab - ac - bc \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4:MATCHING TYPE PROBLEMS|2 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4

If omega, omega^2 be imaginary cube root of unity then (3 +3 omega + 5 omega^2) ^6 - (2 + 6omega + 2 omega^2)^3 is equal to

If omega is an imaginary cube root of unity, then show that (1-omega+omega^2)^5+(1+omega-omega^2)^5 =32

If omega is an imaginary cube root of unity, then show that (1-omega)(1-omega^2)(1-omega^4) (1-omega^5)=9

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .