Home
Class 12
MATHS
If |z1=1,|z2|=2,|z3|=3 and |z1+z2+z3|=1,...

If `|z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3|` is equal to

A

3

B

6

C

36

D

216

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( |9z_1z_2 + 4z_3z_1 + z_2z_3| \) given the conditions \( |z_1| = 1 \), \( |z_2| = 2 \), \( |z_3| = 3 \), and \( |z_1 + z_2 + z_3| = 1 \). ### Step 1: Factor out the common terms We can factor out \( z_1 z_2 z_3 \) from the expression: \[ |9z_1z_2 + 4z_3z_1 + z_2z_3| = |z_1 z_2 z_3| \cdot |9/z_3 + 4/z_2 + 1/z_1| \] ### Step 2: Calculate the modulus of \( z_1 z_2 z_3 \) Using the properties of modulus: \[ |z_1 z_2 z_3| = |z_1| \cdot |z_2| \cdot |z_3| = 1 \cdot 2 \cdot 3 = 6 \] ### Step 3: Evaluate \( |9/z_3 + 4/z_2 + 1/z_1| \) Now we need to evaluate the term \( |9/z_3 + 4/z_2 + 1/z_1| \). We will rewrite each term using the conjugates: \[ \frac{9}{z_3} = \frac{9 \cdot \overline{z_3}}{|z_3|^2}, \quad \frac{4}{z_2} = \frac{4 \cdot \overline{z_2}}{|z_2|^2}, \quad \frac{1}{z_1} = \frac{1 \cdot \overline{z_1}}{|z_1|^2} \] Substituting the moduli: \[ |9/z_3 + 4/z_2 + 1/z_1| = \left| \frac{9 \cdot \overline{z_3}}{9} + \frac{4 \cdot \overline{z_2}}{4} + \frac{\overline{z_1}}{1} \right| = |\overline{z_3} + \overline{z_2} + \overline{z_1}| \] ### Step 4: Use the property of conjugates Using the property of conjugates: \[ |\overline{z_1} + \overline{z_2} + \overline{z_3}| = |z_1 + z_2 + z_3| \] Given \( |z_1 + z_2 + z_3| = 1 \), we have: \[ |\overline{z_1} + \overline{z_2} + \overline{z_3}| = 1 \] ### Step 5: Combine the results Now we can combine our results: \[ |9z_1z_2 + 4z_3z_1 + z_2z_3| = |z_1 z_2 z_3| \cdot |9/z_3 + 4/z_2 + 1/z_1| = 6 \cdot 1 = 6 \] ### Final Answer Thus, the value of \( |9z_1z_2 + 4z_3z_1 + z_2z_3| \) is \( \boxed{6} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4:MATCHING TYPE PROBLEMS|2 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to _______.

If |z_1|=2, |z_2|=3, |z_3|=4 and |2z_1+3z_2 + 4z_3|=9 , then value of |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^(1//3) is :

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If |z_1|=|z_2|=|z_3|=......=|z_n|=1 , then |z_1+z_2+z_3+......+z_n|=

If |z_1-1|<1 , |z_2-2|<2 , |z_3-3|<3 then |z_1+z_2+z_3|

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If z_1,z_2,z_3 be the vertices of a triangle ABC such that |z_1|=|z_2|=|z_3| and |z_1+z_2|^2= |z_1|^2+|z_2|^2, then |arg, ((z_3-z_1)/(z_3-z_2))|= (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4

If |z_(1)|=2,|z_(2)|=3,|z_(3)|=4and|z_(1)+z_(2)+z_(3)|=5. "then"|4z_(2)z_(3)+9z_(3)z_(1)+16z_(1)z_(2)| is