Home
Class 12
MATHS
Let 1/(a1+omega) + 1/(a2+omega)+1/(a3+om...

Let `1/(a_1+omega) + 1/(a_2+omega)+1/(a_3+omega)+ … . + 1/(a_n+omega)=i`
where `a_1,a_2,a_3` …. `a_n in R` and `omega` is imaginary cube root of unity , then evaluate `sum_(r=1)^(n)(2a_r-1)/(a_r^2-a_r+1)` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{1}{a_1 + \omega} + \frac{1}{a_2 + \omega} + \frac{1}{a_3 + \omega} + \ldots + \frac{1}{a_n + \omega} = i \] where \( \omega \) is an imaginary cube root of unity. The cube roots of unity are \( 1, \omega, \omega^2 \) where \( \omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \) and \( \omega^2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2} \). ### Step 1: Rewrite the fractions We can rewrite each term in the sum: \[ \frac{1}{a_r + \omega} = \frac{\omega^2}{(a_r + \omega)(\omega^2)} = \frac{\omega^2}{a_r \omega^2 + 1} \] This gives us: \[ \frac{1}{a_r + \omega} = \frac{\omega^2}{a_r + \omega} \cdot \frac{a_r + \omega^2}{a_r + \omega^2} = \frac{a_r + \omega^2}{a_r^2 + a_r \omega + 1} \] ### Step 2: Substitute into the sum Now substituting this back into the original equation, we have: \[ \sum_{r=1}^{n} \frac{a_r + \omega^2}{a_r^2 + a_r \omega + 1} = i \] ### Step 3: Separate real and imaginary parts Since \( \omega^2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2} \), we can separate the real and imaginary parts of the equation. The real part of \( i \) is \( 0 \) and the imaginary part is \( 1 \). ### Step 4: Analyze the sum The sum can be split into real and imaginary parts: \[ \sum_{r=1}^{n} \frac{a_r - \frac{1}{2}}{a_r^2 - a_r + 1} + i \sum_{r=1}^{n} \frac{-\frac{\sqrt{3}}{2}}{a_r^2 - a_r + 1} = i \] From this, we can equate the real part to \( 0 \): \[ \sum_{r=1}^{n} \frac{2a_r - 1}{a_r^2 - a_r + 1} = 0 \] ### Step 5: Conclusion Thus, the value of the sum is: \[ \sum_{r=1}^{n} \frac{2a_r - 1}{a_r^2 - a_r + 1} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4:MATCHING TYPE PROBLEMS|2 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex nth root of unity, then underset(r=1)overset(n)(ar+b)omega^(r-1) is equal to

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

If (a_2a_3)/(a_1a_4) = (a_2+a_3)/(a_1+a_4)=3 ((a_2 -a_3)/(a_1-a_4)) then a_1,a_2, a_3 , a_4 are in :

The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2)) , where omega is an imaginary cube root of unity, is

Let a_1,a_2,a_3 …. a_n be in A.P. If 1/(a_1a_n)+1/(a_2a_(n-1)) +… + 1/(a_n a_1) = k/(a_1 + a_n) (1/a_1 + 1/a_2 + …. 1/a_n) , then k is equal to :

a_1, a_2, a_3, in R-{0} and a_1+a_2cos2x+a_3sin^2x=0fora l lx in R , then

Let a_1,a_2 ,a_3 …..be in A.P. and a_p, a_q , a_r be in G.P. Then a_q : a_p is equal to :

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

a_1, a_2, a_3, in R-{0} and a_1+a_2cos2x+a_3sin^2x=0 for all x in R , then