Home
Class 12
MATHS
If |z1|=2, |z2|=3, |z3|=4 and |2z1+3z2 ...

If `|z_1|=2, |z_2|=3, |z_3|=4` and `|2z_1+3z_2 + 4z_3|=9` , then value of `|8z_2z_3 + 27z_3z_1 + 64z_1z_2|^(1//3)` is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^{1/3} \) given that \( |z_1| = 2 \), \( |z_2| = 3 \), \( |z_3| = 4 \), and \( |2z_1 + 3z_2 + 4z_3| = 9 \). ### Step-by-Step Solution: 1. **Identify the Moduli**: We are given: \[ |z_1| = 2, \quad |z_2| = 3, \quad |z_3| = 4 \] 2. **Express the Target Modulus**: We need to find: \[ |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^{1/3} \] We can factor out \( z_1 z_2 z_3 \): \[ |z_1 z_2 z_3| \cdot |8/z_1 + 27/z_2 + 64/z_3| \] 3. **Calculate the Modulus of the Product**: The modulus of the product is: \[ |z_1 z_2 z_3| = |z_1| \cdot |z_2| \cdot |z_3| = 2 \cdot 3 \cdot 4 = 24 \] 4. **Calculate the Modulus of the Sum**: We need to calculate: \[ |8/z_1 + 27/z_2 + 64/z_3| \] Using the property of modulus: \[ |8/z_1| = \frac{8}{|z_1|} = \frac{8}{2} = 4, \quad |27/z_2| = \frac{27}{|z_2|} = \frac{27}{3} = 9, \quad |64/z_3| = \frac{64}{|z_3|} = \frac{64}{4} = 16 \] 5. **Combine the Terms**: We can use the triangle inequality: \[ |8/z_1 + 27/z_2 + 64/z_3| \leq |8/z_1| + |27/z_2| + |64/z_3| = 4 + 9 + 16 = 29 \] 6. **Use Given Information**: We know from the problem that: \[ |2z_1 + 3z_2 + 4z_3| = 9 \] Therefore, we can express: \[ |8/z_1 + 27/z_2 + 64/z_3| = |2z_1 + 3z_2 + 4z_3| = 9 \] 7. **Final Calculation**: Now we can combine our results: \[ |8z_2z_3 + 27z_3z_1 + 64z_1z_2| = |z_1 z_2 z_3| \cdot |8/z_1 + 27/z_2 + 64/z_3| = 24 \cdot 9 = 216 \] 8. **Take the Cube Root**: Finally, we take the cube root: \[ |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^{1/3} = 216^{1/3} = 6 \] ### Final Answer: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4:MATCHING TYPE PROBLEMS|2 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If |z_1|=2,|z_2|=3,|z_3|=4 and |2z_1+3z_2+4z_3|=4 then the expression |8z_2z_3+27z_3z_1+64z_1z_2| equals (A) 72 (B) 24 (C) 96 (D) 92

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1-1|<1 , |z_2-2|<2 , |z_3-3|<3 then |z_1+z_2+z_3|

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to _______.

If |z_(1)|=2,|z_(2)|=3,|z_(3)|=4and|z_(1)+z_(2)+z_(3)|=5. "then"|4z_(2)z_(3)+9z_(3)z_(1)+16z_(1)z_(2)| is

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If 2z_1-3z_2 + z_3=0 , then z_1, z_2 and z_3 are represented by

Let z_1, z_2 , z_3 in C such that |z_1 | = |z_2| = |z_3| = |z_1+ z_2+ z _3| = 4 . If |z_1 - z _2 | = | z _1 + z _ 3 | and z_2 ne z_3 , then values of |z_1 + z_2 |* |z_1 + z _ 3| is _____.