Home
Class 12
MATHS
If A^(-1)=[(sin^2alpha,0,0),(0,sin^2 bet...

If `A^(-1)=[(sin^2alpha,0,0),(0,sin^2 beta,0), (0,0,sin^2gamma)]` and `B^(-1)=[(cos^2alpha,0,0),(0,cos^2 beta,0), (0,0,cos^2gamma)]` where `alpha, beta, gamma` are any real numbers and `C=A^(-5)+B^(-5)+5A^(-1)B^(-1)(A^(-3) +B^(-3))+10 A^(-2)B^(-2)(A^(-1)+B^(-1))` then find |C|

A

A) 0

B

B) 1

C

C) 2

D

D) 3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the matrix \( C \) defined as: \[ C = A^{-5} + B^{-5} + 5 A^{-1} B^{-1} (A^{-3} + B^{-3}) + 10 A^{-2} B^{-2} (A^{-1} + B^{-1}) \] Given the matrices: \[ A^{-1} = \begin{pmatrix} \sin^2 \alpha & 0 & 0 \\ 0 & \sin^2 \beta & 0 \\ 0 & 0 & \sin^2 \gamma \end{pmatrix} \] \[ B^{-1} = \begin{pmatrix} \cos^2 \alpha & 0 & 0 \\ 0 & \cos^2 \beta & 0 \\ 0 & 0 & \cos^2 \gamma \end{pmatrix} \] ### Step 1: Calculate \( A^{-5} \) and \( B^{-5} \) Using the property of matrices, \( A^{-n} = (A^{-1})^n \): \[ A^{-5} = (A^{-1})^5 = \begin{pmatrix} \sin^{10} \alpha & 0 & 0 \\ 0 & \sin^{10} \beta & 0 \\ 0 & 0 & \sin^{10} \gamma \end{pmatrix} \] \[ B^{-5} = (B^{-1})^5 = \begin{pmatrix} \cos^{10} \alpha & 0 & 0 \\ 0 & \cos^{10} \beta & 0 \\ 0 & 0 & \cos^{10} \gamma \end{pmatrix} \] ### Step 2: Calculate \( A^{-3} \) and \( B^{-3} \) \[ A^{-3} = (A^{-1})^3 = \begin{pmatrix} \sin^6 \alpha & 0 & 0 \\ 0 & \sin^6 \beta & 0 \\ 0 & 0 & \sin^6 \gamma \end{pmatrix} \] \[ B^{-3} = (B^{-1})^3 = \begin{pmatrix} \cos^6 \alpha & 0 & 0 \\ 0 & \cos^6 \beta & 0 \\ 0 & 0 & \cos^6 \gamma \end{pmatrix} \] ### Step 3: Calculate \( A^{-1} B^{-1} \) \[ A^{-1} B^{-1} = \begin{pmatrix} \sin^2 \alpha \cos^2 \alpha & 0 & 0 \\ 0 & \sin^2 \beta \cos^2 \beta & 0 \\ 0 & 0 & \sin^2 \gamma \cos^2 \gamma \end{pmatrix} \] ### Step 4: Calculate \( A^{-2} B^{-2} \) \[ A^{-2} = (A^{-1})^2 = \begin{pmatrix} \sin^4 \alpha & 0 & 0 \\ 0 & \sin^4 \beta & 0 \\ 0 & 0 & \sin^4 \gamma \end{pmatrix} \] \[ B^{-2} = (B^{-1})^2 = \begin{pmatrix} \cos^4 \alpha & 0 & 0 \\ 0 & \cos^4 \beta & 0 \\ 0 & 0 & \cos^4 \gamma \end{pmatrix} \] ### Step 5: Substitute into \( C \) Now substituting these matrices into the expression for \( C \): \[ C = \begin{pmatrix} \sin^{10} \alpha + \cos^{10} \alpha & 0 & 0 \\ 0 & \sin^{10} \beta + \cos^{10} \beta & 0 \\ 0 & 0 & \sin^{10} \gamma + \cos^{10} \gamma \end{pmatrix} \] Now, we need to calculate \( 5 A^{-1} B^{-1} (A^{-3} + B^{-3}) \) and \( 10 A^{-2} B^{-2} (A^{-1} + B^{-1}) \). ### Step 6: Simplifying \( C \) Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \sin^{10} \theta + \cos^{10} \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^8 \theta + \cos^8 \theta) = 1 \cdot (\sin^8 \theta + \cos^8 \theta) \] Thus, we can conclude that: \[ C = I \] Where \( I \) is the identity matrix. ### Step 7: Find the Determinant of \( C \) The determinant of the identity matrix \( I \) is: \[ |C| = 1 \] ### Conclusion Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If lim_(xrarroo) xlog_(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)=-5. where alpha, beta, gamma are finite real numbers, then

Let A=[(0,2),(0,0)]and (A+1)^100 -100A=[(alpha,beta),(gamma,delta)], then alpha+beta+gamma+delta=...

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alphagt0, betagt0, gammagt0, alpha+beta+gamma= pi show that sin^2alpha+sin^2beta-sin^2gamma =

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

Determine the values of alpha, beta, gamma when [{:(0,2sinbeta,tan gamma),(cos alpha, sin beta,-tan gamma),(cos alpha, -sin beta, tan gamma):}] is orthogonal.

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha,beta and gamma are such that alpha+beta+gamma=0 , then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|