Home
Class 12
MATHS
If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then ...

If `A=[(3,-3,4),(2,-3,4),(0,-1,1)]`, then `A^(-1)=`

A

A

B

`A^(2)`

C

`A^(3)`

D

`A^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 3, b = -3, c = 4 \) - \( d = 2, e = -3, f = 4 \) - \( g = 0, h = -1, i = 1 \) Calculating the determinant: \[ \text{det}(A) = 3((-3)(1) - (4)(-1)) - (-3)((2)(1) - (4)(0)) + 4((2)(-1) - (-3)(0)) \] Calculating each term: 1. \( (-3)(1) - (4)(-1) = -3 + 4 = 1 \) 2. \( (2)(1) - (4)(0) = 2 - 0 = 2 \) 3. \( (2)(-1) - (-3)(0) = -2 - 0 = -2 \) Now substituting back: \[ \text{det}(A) = 3(1) + 3(2) + 4(-2) = 3 + 6 - 8 = 1 \] ### Step 2: Calculate the Adjoint of \( A \) The adjoint of a matrix \( A \) is the transpose of the cofactor matrix. We need to find the cofactors for each element of \( A \). **Cofactor Calculation:** 1. **Cofactor \( C_{11} \)** (remove row 1, column 1): \[ C_{11} = \text{det}\begin{pmatrix} -3 & 4 \\ -1 & 1 \end{pmatrix} = (-3)(1) - (4)(-1) = -3 + 4 = 1 \] 2. **Cofactor \( C_{12} \)** (remove row 1, column 2): \[ C_{12} = -\text{det}\begin{pmatrix} 2 & 4 \\ 0 & 1 \end{pmatrix} = -((2)(1) - (4)(0)) = -2 \] 3. **Cofactor \( C_{13} \)** (remove row 1, column 3): \[ C_{13} = \text{det}\begin{pmatrix} 2 & -3 \\ 0 & -1 \end{pmatrix} = (2)(-1) - (-3)(0) = -2 \] 4. **Cofactor \( C_{21} \)** (remove row 2, column 1): \[ C_{21} = -\text{det}\begin{pmatrix} -3 & 4 \\ -1 & 1 \end{pmatrix} = -((-3)(1) - (4)(-1)) = -(-3 + 4) = -1 \] 5. **Cofactor \( C_{22} \)** (remove row 2, column 2): \[ C_{22} = \text{det}\begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix} = (3)(1) - (4)(0) = 3 \] 6. **Cofactor \( C_{23} \)** (remove row 2, column 3): \[ C_{23} = -\text{det}\begin{pmatrix} 3 & -3 \\ 0 & -1 \end{pmatrix} = -((3)(-1) - (-3)(0)) = 3 \] 7. **Cofactor \( C_{31} \)** (remove row 3, column 1): \[ C_{31} = \text{det}\begin{pmatrix} -3 & 4 \\ -3 & 4 \end{pmatrix} = (-3)(4) - (4)(-3) = -12 + 12 = 0 \] 8. **Cofactor \( C_{32} \)** (remove row 3, column 2): \[ C_{32} = -\text{det}\begin{pmatrix} 3 & 4 \\ 2 & 4 \end{pmatrix} = -((3)(4) - (4)(2)) = -(12 - 8) = -4 \] 9. **Cofactor \( C_{33} \)** (remove row 3, column 3): \[ C_{33} = \text{det}\begin{pmatrix} 3 & -3 \\ 2 & -3 \end{pmatrix} = (3)(-3) - (-3)(2) = -9 + 6 = -3 \] Now, the cofactor matrix is: \[ \text{Cof}(A) = \begin{pmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{pmatrix} \] ### Step 3: Calculate the Inverse of \( A \) The inverse of \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = \text{adj}(A) = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{pmatrix} \] ### Final Answer \[ A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then show that A^(3)=A^(-1) .

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

If A=[(1, 2, 0 ),(3,-4, 5),( 0,-1, 3)] , compute A^2-4A+3I .

(i) if A=[{:(4,-1,-4),(3,0,-4),(3,-1,-3):}], then show that A^(2)=I

If A=[3-3 4 2-3 4 0-1 1] , show that A^(-1)=A^3 .

Given A=[(5, 0, 4),( 2, 3, 2),( 1, 2, 1)] , B^(-1)=[(1, 3, 3),( 1, 4, 3),( 1, 3, 4)] . Compute (A B)^(-1) .

If A=[[1,2,3]], B=[(-5,4,0),(0,2,-1),(1,-3,2)] then (A) AB=[(-2),(-1),(4)] (B) AB=[-2,-1,4] (C) AB=[4,-1,2] (D) AB=[(-5,4,0),(0,4,-2),(3,-9,6)]

If A=|{:(4,-1,-4),(3,0,-4),(3,-1,-3):}| , then show that A=A^(-1)

If A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] and B=[(-4,-3,-3),(1,0,1),(4,4,3)] are two matrices, then the value of the determinant (A+A^(2)B^(2)+A^(3)+A^(4)B^(4)+"………"20" terms")