Home
Class 12
MATHS
Let matrix A=[(x,3,2),(1,y,4),(2, 2,z)]...

Let matrix `A=[(x,3,2),(1,y,4),(2, 2,z)], " if " xyz=2lambda and 8x+4y+3x=lambda+28`, then (adj A) A equals :

A

`[(lambda+1,0,0),(0,lambda+1,0),(0,0,lambda+1)]`

B

`[(lambda,0,0),(0,lambda,0),(0,0,lambda)]`

C

`[(lambda^(2),0,0),(0,lambda^(2),0),(0,0,lambda^(2))]`

D

`[(lambda+2,0,0),(0,lambda+2,0),(0,0,lambda+2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\text{adj } A) A\) given the matrix \(A\) and certain conditions involving \(\lambda\). ### Step-by-Step Solution: 1. **Define the Matrix A**: The matrix \(A\) is given as: \[ A = \begin{pmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{pmatrix} \] 2. **Calculate the Determinant of A**: The determinant of a 3x3 matrix can be calculated using the formula: \[ \text{det } A = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \(A\): \[ \text{det } A = x(yz - 8) - 3(1z - 8) + 2(2y - 2) \] Expanding this gives: \[ = xyz - 8x - 3z + 24 + 4y - 4 \] Thus, we have: \[ \text{det } A = xyz - 8x + 4y + 20 - 3z \] 3. **Substitute the Given Conditions**: We know from the problem statement: \[ xyz = 2\lambda \quad \text{and} \quad 8x + 4y + 3z = \lambda + 28 \] Substitute \(xyz\) into the determinant: \[ \text{det } A = 2\lambda - 8x + 4y + 20 - 3z \] 4. **Rearranging the Second Condition**: From \(8x + 4y + 3z = \lambda + 28\), we can express \(8x + 4y + 3z\) as: \[ 8x + 4y + 3z - \lambda - 28 = 0 \] Rearranging gives: \[ \lambda = 8x + 4y + 3z - 28 \] 5. **Substituting Back into the Determinant**: Now, substitute \(\lambda\) back into the determinant: \[ \text{det } A = 2(8x + 4y + 3z - 28) - 8x + 4y + 20 - 3z \] Simplifying this: \[ = 16x + 8y + 6z - 56 - 8x + 4y + 20 - 3z \] \[ = (16x - 8x) + (8y + 4y) + (6z - 3z) - 56 + 20 \] \[ = 8x + 12y + 3z - 36 \] 6. **Setting the Determinant Equal to Zero**: For \((\text{adj } A) A = \text{det } A \cdot I\), we need to find the value of \(\text{det } A\). Since we have already simplified it: \[ \text{det } A = \lambda \] Thus, we can conclude: \[ (\text{adj } A) A = \text{det } A \cdot I = \lambda I \] 7. **Final Result**: The adjoint of \(A\) multiplied by \(A\) gives: \[ (\text{adj } A) A = \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \] ### Conclusion: The final answer is: \[ (\text{adj } A) A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Given that matrix A[(x,3,2),(1,y,4),(2,2,z)] . If xyz=60 and 8x+4y+3z=20 , then A(adj A) is equal to

Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]] . If xyz=60 and 8x+4y+3z=20, then A(adjA) is equal to

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] , where x, y, z in N . If |adj(adj (adj(adjA)))|=4^(8).5^(16) , then the number of such matrices A is equal to (where, |M| represents determinant of a matrix M)

If z=x+i y, z^(1/3)=a-i b " and " x/a-y/b=lambda(a^2-b^2), then lambda is equal to

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

Let the matrix A=[(1,1),(2,2)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the vlaue of lambda is equal to

Let matrix A=[[x,y,-z],[1,2,3],[1,1,2]] where x,y,zepsilonN . If det.(adj(adj.A))=2^8.(3^4) then the number of such matrices A is :

Let L be the line belonging to the family of straight lines (a+2b) x+(a-3b)y+a-8b =0, a, b in R, which is the farthest from the point (2, 2). If L is concurrent with the lines x-2y+1=0 and 3x-4y+ lambda=0 , then the value of lambda is

If the line (x-1)/(1)=(y-k)/(-2)=(z-3)/(lambda) lies in the plane 3x+4y-2z=6 , then 5|k|+3|lambda| is equal to