Home
Class 12
MATHS
If the trace of the matrix A=[(x-2,e^(x...

If the trace of the matrix `A=[(x-2,e^(x), -sinx),("cos"x^(2),x^(2)-x+3,"In"|x|),(cot x,"tan"^(-1)x,x-7)]` is zero, then x is equal to :

A

`-2 or 3`

B

`-3 or -2`

C

`-3 or 2`

D

2 or 3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the trace of the matrix \( A \) is zero. The trace of a matrix is defined as the sum of the elements on its main diagonal. Given the matrix: \[ A = \begin{pmatrix} x - 2 & e^x & -\sin x \\ \cos x^2 & x^2 - x + 3 & \ln |x| \\ \cot x & \tan^{-1} x & x - 7 \end{pmatrix} \] ### Step 1: Identify the elements on the main diagonal The elements on the main diagonal of matrix \( A \) are: - First element: \( x - 2 \) - Second element: \( x^2 - x + 3 \) - Third element: \( x - 7 \) ### Step 2: Write the expression for the trace The trace of matrix \( A \) can be expressed as: \[ \text{Trace}(A) = (x - 2) + (x^2 - x + 3) + (x - 7) \] ### Step 3: Simplify the expression Now, let's simplify the expression for the trace: \[ \text{Trace}(A) = (x - 2) + (x^2 - x + 3) + (x - 7) \] Combine like terms: \[ = x - 2 + x^2 - x + 3 + x - 7 \] \[ = x^2 + (x - x + x) + (-2 + 3 - 7) \] \[ = x^2 + x - 6 \] ### Step 4: Set the trace equal to zero We are given that the trace of the matrix is zero: \[ x^2 + x - 6 = 0 \] ### Step 5: Factor the quadratic equation To solve the quadratic equation \( x^2 + x - 6 = 0 \), we can factor it: \[ x^2 + 3x - 2x - 6 = 0 \] \[ (x + 3)(x - 2) = 0 \] ### Step 6: Solve for \( x \) Setting each factor equal to zero gives us: \[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \] \[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \] Thus, the values of \( x \) that satisfy the equation are \( x = -3 \) or \( x = 2 \). ### Conclusion The possible values of \( x \) are \( -3 \) and \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If the trace of matrix A=[[x-2,e^x,-sinx],[cos x^2, x^2-x+3,ln |x|],[0,tan^(-1)x, x-7]] is zero, then x is equal to :

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

If tan x + cot x =2 , then sin^(2n)x + cos^(2n) x is equal to

int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C , then f(x) is equal to

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

If Delta (x)=|{:(x,1+x^(2),x^(3)),(log(1+x^(2)),e^(x),sinx),(cosx,tanx,sin^(2)x):}| then

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x