Home
Class 12
MATHS
Let matrix A=[[x,y,-z],[1,2,3],[1,1,2]] ...

Let matrix `A=[[x,y,-z],[1,2,3],[1,1,2]]` where `x,y,zepsilonN`. If `det.(adj(adj.A))=2^8.(3^4)` then the number of such matrices A is :

A

220

B

45

C

55

D

110

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of matrices \( A = \begin{bmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix} \) such that \( \det(\text{adj}(\text{adj}(A))) = 2^8 \cdot 3^4 \), where \( x, y, z \) are natural numbers. ### Step 1: Determine the order of the matrix The matrix \( A \) is a \( 3 \times 3 \) matrix, so the order \( n = 3 \). ### Step 2: Use the property of determinants We know that: \[ \det(\text{adj}(A)) = \det(A)^{n-1} \] For \( n = 3 \): \[ \det(\text{adj}(A)) = \det(A)^2 \] Now, applying this to the adjoint of the adjoint: \[ \det(\text{adj}(\text{adj}(A))) = \det(\text{adj}(A))^{n-1} = \det(A)^{(n-1)(n-1)} = \det(A)^4 \] ### Step 3: Set up the equation From the problem statement, we have: \[ \det(A)^4 = 2^8 \cdot 3^4 \] Taking the fourth root of both sides gives: \[ \det(A) = \sqrt[4]{2^8 \cdot 3^4} = 2^{8/4} \cdot 3^{4/4} = 2^2 \cdot 3^1 = 4 \cdot 3 = 12 \] ### Step 4: Calculate the determinant of matrix \( A \) The determinant of \( A \) can be calculated using the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \det(A) = x \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} - y \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - z \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} \] Calculating the minors: \[ \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2 \cdot 2 - 3 \cdot 1) = 4 - 3 = 1 \] \[ \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} = (1 \cdot 2 - 3 \cdot 1) = 2 - 3 = -1 \] \[ \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = (1 \cdot 1 - 2 \cdot 1) = 1 - 2 = -1 \] Thus, substituting back: \[ \det(A) = x(1) - y(-1) - z(-1) = x + y + z \] Setting this equal to 12: \[ x + y + z = 12 \] ### Step 5: Count the number of solutions We need to find the number of solutions in natural numbers \( x, y, z \) such that \( x + y + z = 12 \). Using the stars and bars combinatorial method, the number of solutions in natural numbers can be calculated using the formula: \[ \text{Number of solutions} = \binom{m - 1}{n - 1} \] where \( m = 12 \) and \( n = 3 \): \[ \text{Number of solutions} = \binom{12 - 1}{3 - 1} = \binom{11}{2} \] Calculating \( \binom{11}{2} \): \[ \binom{11}{2} = \frac{11 \cdot 10}{2 \cdot 1} = 55 \] ### Final Answer Thus, the number of such matrices \( A \) is \( \boxed{55} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] , where x, y, z in N . If |adj(adj (adj(adjA)))|=4^(8).5^(16) , then the number of such matrices A is equal to (where, |M| represents determinant of a matrix M)

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

A, B and C are three square matrices of order 3 such that A= diag (x, y, z) , det (B)=4 and det (C)=2 , where x, y, z in I^(+) . If det (adj (adj (ABC))) =2^(16)xx3^(8)xx7^(4) , then the number of distinct possible matrices A is ________ .

Let A=[a_("ij")] be a matrix of order 2 where a_("ij") in {-1, 0, 1} and adj. A=-A . If det. (A)=-1 , then the number of such matrices is ______ .

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

If A=[[1,2,3],[1,3,4],[1,4,3]] ,verify that A(adj.A)=(adj.A)=|A|.I

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (adjA)) is

Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]] . If xyz=60 and 8x+4y+3z=20, then A(adjA) is equal to

If A=[[1,1,2],[1,3,4],[1,-1,3]], B=adj(A) and C=3A then (|adj(B)|)/(|C|) is

Find adj for A=[[2 , 3 ] , [1 , 4]]