Home
Class 12
MATHS
Let A(alpha)=[(cosalpha, -sinalpha,0),(s...

Let `A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)]`, then :

A

`A_(alpha+beta)=A_(alpha)A_(beta)`

B

`A_(alpha)^(-1)=A_(-alpha)`

C

`A_(alpha)^(-1)=-A_(alpha)`

D

`A_(alpha)^(2)=-I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A_{\alpha} \) and derive the necessary results step by step. ### Step 1: Define the Matrix The matrix \( A_{\alpha} \) is given as: \[ A_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Find \( A_{-\alpha} \) To find \( A_{-\alpha} \), we replace \( \alpha \) with \( -\alpha \) in the matrix: \[ A_{-\alpha} = \begin{pmatrix} \cos(-\alpha) & -\sin(-\alpha) & 0 \\ \sin(-\alpha) & \cos(-\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Using the properties of cosine and sine, we have: \[ \cos(-\alpha) = \cos \alpha \quad \text{and} \quad \sin(-\alpha) = -\sin \alpha \] Thus, \[ A_{-\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Find the Cofactor Matrix The cofactor matrix \( C \) of \( A_{\alpha} \) is computed as follows: 1. **C11**: Minor of \( A_{\alpha} \) by removing the first row and first column: \[ C_{11} = \cos \alpha \] 2. **C12**: Minor of \( A_{\alpha} \) by removing the first row and second column: \[ C_{12} = -\sin \alpha \] 3. **C13**: Minor of \( A_{\alpha} \) by removing the first row and third column: \[ C_{13} = 0 \] 4. **C21**: Minor of \( A_{\alpha} \) by removing the second row and first column: \[ C_{21} = \sin \alpha \] 5. **C22**: Minor of \( A_{\alpha} \) by removing the second row and second column: \[ C_{22} = \cos \alpha \] 6. **C23**: Minor of \( A_{\alpha} \) by removing the second row and third column: \[ C_{23} = 0 \] 7. **C31**: Minor of \( A_{\alpha} \) by removing the third row and first column: \[ C_{31} = 0 \] 8. **C32**: Minor of \( A_{\alpha} \) by removing the third row and second column: \[ C_{32} = 0 \] 9. **C33**: Minor of \( A_{\alpha} \) by removing the third row and third column: \[ C_{33} = 1 \] Thus, the cofactor matrix \( C \) is: \[ C = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Find the Determinant of \( A_{\alpha} \) The determinant of \( A_{\alpha} \) is calculated as: \[ \text{det}(A_{\alpha}) = \cos \alpha \cdot \cos \alpha \cdot 1 - (-\sin \alpha)(\sin \alpha) = \cos^2 \alpha + \sin^2 \alpha = 1 \] ### Step 5: Find the Inverse of \( A_{\alpha} \) Since the determinant is 1, the inverse of \( A_{\alpha} \) can be found using the adjoint: \[ A_{\alpha}^{-1} = \frac{1}{\text{det}(A_{\alpha})} \cdot C^T = C^T \] The transpose of the cofactor matrix \( C \) is: \[ C^T = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ A_{\alpha}^{-1} = A_{-\alpha} \] ### Step 6: Verify the Results 1. **Result 1**: \( A_{-\alpha} = A_{\alpha}^{-1} \) 2. **Result 2**: \( A_{\alpha} A_{\beta} = A_{\alpha + \beta} \) ### Conclusion The correct options based on the analysis are: - \( A_{\alpha} A_{\beta} = A_{\alpha + \beta} \) - \( A_{-\alpha} = A_{\alpha}^{-1} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],t h e n prove that [F(alpha)]^(-1)=F(-alpha)dot

If A=[(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),( 0, 0, 1)], find a d jdotA and verify that A(a d jdotA)=(a d jdotA)A=|A|I_3dot

If A(alpha,beta)=[[cosalpha,sinalpha,0],[-sinalpha,cosalpha,0],[ 0, 0,e^(beta)]],t h e nA(alpha,beta)^(-1) is equal to a. A(-alpha,-beta) b. A(-alpha,beta) c. A(alpha,-beta) d. A(alpha,beta)

Let F(alpha)=[cosalpha-sinalpha0sinalphacosalpha0 0 0 1] and G(beta)=[cosbeta0sinbeta0 1 0-sinbeta0cosbeta] . Show that [F(alpha)]^(-1)=F(-alpha) (ii) [G(beta)]^(-1)=G(-beta) (iii) [F(alpha)G(beta)]^(-1)=G(-beta)F(-alpha) .

If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A^(-1) is equal to

If A=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]] , find a d j\ A and verify that A(a d j\ A)=(a d j\ A)A=|A|I_3 .

Let A=({:(cosalpha,-,sinalpha),(sinalpha,,cosalpha):}),(alphaepsilonR) such that A^(32)=({:(0,-1),(1,0):}) . Then a value of alpha is:

If A_alpha=[[cosalpha ,sinalpha],[-sinalpha,cosalpha]] , then prove that A_alphaA_beta=A_(alpha+beta) for every positive integer n .

If A=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] is identity matrix, then write the value of alpha .

Let A=[(cos alpha,sin alpha),(-sinalpha,cosalpha)] and matrix B is defined such that B=A+3A^(2)+3A^(3)+A^(4). If |B|=8 then the number of values of alpha in [0, 10pi] is