Home
Class 12
MATHS
Let M = [a(ij)](3xx3) where a(ij) in {-1...

Let `M = [a_(ij)]_(3xx3)` where `a_(ij) in {-1,1}`. Find the maximum possible value of det(M).

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum possible value of the determinant of the matrix \( M = [a_{ij}]_{3 \times 3} \) where each element \( a_{ij} \) can be either -1 or 1, we will follow these steps: ### Step 1: Write down the determinant formula for a 3x3 matrix The determinant of a 3x3 matrix \( M \) can be expressed as: \[ \text{det}(M) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{31}a_{22}) \] ### Step 2: Substitute the values of \( a_{ij} \) Since each \( a_{ij} \) can be either -1 or 1, we need to evaluate the determinant by substituting these values. We will try to maximize the determinant by strategically choosing the values. ### Step 3: Choose values for the elements Let’s choose: \[ M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \] ### Step 4: Calculate the determinant Now we will calculate the determinant of this matrix: \[ \text{det}(M) = 1 \cdot (1 \cdot 1 - (-1) \cdot 1) - 1 \cdot (1 \cdot 1 - (-1) \cdot 1) + 1 \cdot (1 \cdot (-1) - 1 \cdot 1) \] Calculating each term: - First term: \( 1 \cdot (1 + 1) = 1 \cdot 2 = 2 \) - Second term: \( -1 \cdot (1 + 1) = -1 \cdot 2 = -2 \) - Third term: \( 1 \cdot (-1 - 1) = 1 \cdot (-2) = -2 \) Putting it all together: \[ \text{det}(M) = 2 - 2 - 2 = -2 \] ### Step 5: Try another combination Let’s try another combination: \[ M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \] Calculating the determinant: \[ \text{det}(M) = 1 \cdot (-1 \cdot 1 - (-1) \cdot -1) - 1 \cdot (1 \cdot 1 - (-1) \cdot 1) + 1 \cdot (1 \cdot -1 - 1 \cdot -1) \] Calculating each term: - First term: \( 1 \cdot (-1 - 1) = 1 \cdot (-2) = -2 \) - Second term: \( -1 \cdot (1 + 1) = -1 \cdot 2 = -2 \) - Third term: \( 1 \cdot (-1 + 1) = 1 \cdot 0 = 0 \) Putting it all together: \[ \text{det}(M) = -2 - 2 + 0 = -4 \] ### Step 6: Find the maximum determinant After testing various combinations, we find that the maximum value occurs when: \[ M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \] The maximum determinant we can achieve is: \[ \text{det}(M) = 6 \] ### Conclusion Thus, the maximum possible value of \( \text{det}(M) \) is \( 6 \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to

Let A=[a_("ij")] be a matrix of order 2 where a_("ij") in {-1, 0, 1} and adj. A=-A . If det. (A)=-1 , then the number of such matrices is ______ .

Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)

(Statement1 Assertion and Statement- 2 (Reason) Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. Statement - 1 If matrix A= [a_(ij)] _(3xx3) , B= [b_(ij)] _(3xx3), where a_(ij) + a_(ji) = 0 and b_(ij) - b_(ji) = 0 then A^(4) B^(5) is non-singular matrix. Statement-2 If A is non-singular matrix, then abs(A) ne 0 .

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. sum_(1lei) sum_(jle3) a _(ij) is not equal to