Home
Class 12
MATHS
inta^(x) (ln x + ln a. ln ((x)/(e))^(x))...

`inta^(x) (ln x + ln a. ln ((x)/(e))^(x))dx=`

A

`a ^(x) ln((e)/(x ))^(2x) +C`

B

`a ^(x) ln ((x)/(e ))^(x) +C`

C

`a ^(x)+ ln ((x)/(e ))^(x) +C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int a^x \left( \ln x + \ln a \cdot \ln \left( \frac{x}{e} \right) \right) dx \), we will follow these steps: ### Step 1: Simplify the integrand We start with the expression inside the integral: \[ \ln a \cdot \ln \left( \frac{x}{e} \right) = \ln a \cdot (\ln x - \ln e) = \ln a \cdot \ln x - \ln a \] Thus, we can rewrite the integral as: \[ I = \int a^x \left( \ln x + \ln a \cdot \ln x - \ln a \right) dx \] This simplifies to: \[ I = \int a^x \left( (1 + \ln a) \ln x - \ln a \right) dx \] ### Step 2: Separate the integral We can separate the integral into two parts: \[ I = (1 + \ln a) \int a^x \ln x \, dx - \ln a \int a^x \, dx \] ### Step 3: Solve the first integral using integration by parts Let \( u = \ln x \) and \( dv = a^x dx \). Then, we have: \[ du = \frac{1}{x} dx \quad \text{and} \quad v = \frac{a^x}{\ln a} \] Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int \ln x \cdot a^x \, dx = \frac{a^x \ln x}{\ln a} - \int \frac{a^x}{\ln a} \cdot \frac{1}{x} \, dx \] ### Step 4: Solve the second integral The second integral \( \int a^x \, dx \) is straightforward: \[ \int a^x \, dx = \frac{a^x}{\ln a} \] ### Step 5: Combine results Now we can substitute back into our expression for \( I \): \[ I = (1 + \ln a) \left( \frac{a^x \ln x}{\ln a} - \int \frac{a^x}{\ln a} \cdot \frac{1}{x} \, dx \right) - \ln a \cdot \frac{a^x}{\ln a} \] This simplifies to: \[ I = \frac{(1 + \ln a) a^x \ln x}{\ln a} - \frac{(1 + \ln a) \cdot a^x}{\ln a} - \frac{a^x}{\ln a} \] ### Step 6: Final simplification Combining terms, we have: \[ I = \frac{(1 + \ln a) a^x \ln x - (1 + 2 \ln a) a^x}{\ln a} \] This can be further simplified if necessary, but we can express it in terms of \( C \) (the constant of integration). ### Final Result Thus, the final result of the integral is: \[ I = \frac{(1 + \ln a) a^x \ln x - (1 + 2 \ln a) a^x}{\ln a} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

((log x)^(2))/(x) dx

int (int e ^(x) (ln x +(2 )/(x) -(1)/(x ^(2)))dx )dx =

Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=

int((log _(e)x)^(3))/(x)dx

Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4)) dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

int e^(x log a ) e^(x) dx is equal to A) (a^(x))/( log ae) + C B) ( e^(x))/( 1+log a ) + C C) ( ae )^(x) +C D) ((ae)^(x))/( log ae) +C

Evaluate: int e^(x) (tan x + log sec x) dx .

(i) (log x. sin[1+(log x)^(2)])/(x) dx (ii) int(dx)/(x(1+log)^(n))

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. inta^(x) (ln x + ln a. ln ((x)/(e))^(x))dx=

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |