Home
Class 12
MATHS
int ((2+sqrtx)dx )/((x+1+sqrtx)^(2)) is ...

`int ((2+sqrtx)dx )/((x+1+sqrtx)^(2))` is equal to:

A

`(x)/(x+sqrtx+1)+C`

B

`(2x)/(x+sqrtx+1)+C`

C

`(-2x)/(x+sqrtx+1)+C`

D

`(-x)/(x+sqrtx+1)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{2 + \sqrt{x}}{(x + 1 + \sqrt{x})^2} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral as given: \[ \int \frac{2 + \sqrt{x}}{(x + 1 + \sqrt{x})^2} \, dx. \] ### Step 2: Substitute for Simplicity Let us make the substitution: \[ t = x + 1 + \sqrt{x}. \] To differentiate, we need to express \( \sqrt{x} \) in terms of \( t \): \[ \sqrt{x} = t - x - 1. \] Now, differentiating both sides with respect to \( x \): \[ \frac{1}{2\sqrt{x}} \, dx = dt - dx. \] Rearranging gives us: \[ dx = 2\sqrt{x} \, dt. \] ### Step 3: Express \( \sqrt{x} \) in terms of \( t \) From our substitution, we can express \( \sqrt{x} \) as: \[ \sqrt{x} = t - x - 1. \] ### Step 4: Substitute Back into the Integral Now, substituting back into the integral, we have: \[ \int \frac{2 + (t - x - 1)}{t^2} \cdot 2\sqrt{x} \, dt. \] ### Step 5: Simplify the Integral This simplifies to: \[ \int \frac{1 + t - x}{t^2} \cdot 2\sqrt{x} \, dt. \] ### Step 6: Change of Variables Now, we need to express everything in terms of \( t \). We can express \( x \) in terms of \( t \) and \( \sqrt{x} \): \[ x = (t - 1)^2. \] ### Step 7: Final Integral Substituting these back into the integral, we can simplify and integrate: \[ \int \frac{2}{t^2} \, dt. \] ### Step 8: Integrate The integral of \( \frac{2}{t^2} \) is: \[ - \frac{2}{t} + C. \] ### Step 9: Substitute Back for \( t \) Substituting back for \( t \): \[ - \frac{2}{x + 1 + \sqrt{x}} + C. \] ### Final Answer Thus, the solution to the integral is: \[ \int \frac{2 + \sqrt{x}}{(x + 1 + \sqrt{x})^2} \, dx = -\frac{2}{x + 1 + \sqrt{x}} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int e^(sqrtx) dx

int (1-x) sqrtx dx

The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where, C is the constant of integration)

int (1)/(x+sqrtx) dx is equal to

If f(4)= 4, f'(4) =1 then lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is equal to

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to

The velue of lim_(x->0)(sin(3sqrtx)ln(1+3x))/((tan^(- 1)sqrt(x))^2(e^(5(3sqrtx))-1)) is equal to

The value of the integral intx^((1)/(3))(1-sqrtx)^(3)dx is equal to (where c is the constant of integration)

int (1/sqrtx-sqrtx)dx

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int ((2+sqrtx)dx )/((x+1+sqrtx)^(2)) is equal to:

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |