Home
Class 12
MATHS
int (dx)/sqrt(1-tan^2 x)=1/lambda sin^-1...

`int (dx)/sqrt(1-tan^2 x)=1/lambda sin^-1 (lambdasinx)+C`,then `lambda=`

A

`sqrt2`

B

`sqrt3`

C

2

D

`sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{\sqrt{1 - \tan^2 x}} \) and find the value of \( \lambda \) such that \[ \int \frac{dx}{\sqrt{1 - \tan^2 x}} = \frac{1}{\lambda} \sin^{-1}(\lambda \sin x) + C, \] we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{dx}{\sqrt{1 - \tan^2 x}}. \] Using the identity \( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \), we can rewrite \( 1 - \tan^2 x \) as: \[ 1 - \tan^2 x = 1 - \frac{\sin^2 x}{\cos^2 x} = \frac{\cos^2 x - \sin^2 x}{\cos^2 x} = \frac{\cos^2 x - \sin^2 x}{\cos^2 x}. \] Thus, we have: \[ \sqrt{1 - \tan^2 x} = \sqrt{\frac{\cos^2 x - \sin^2 x}{\cos^2 x}} = \frac{\sqrt{\cos^2 x - \sin^2 x}}{\cos x}. \] ### Step 2: Substitute into the Integral Substituting this back into the integral gives: \[ \int \frac{\cos x \, dx}{\sqrt{\cos^2 x - \sin^2 x}}. \] ### Step 3: Use a Trigonometric Identity We know that \( \cos^2 x + \sin^2 x = 1 \). Therefore, we can express \( \cos^2 x - \sin^2 x \) as: \[ \cos^2 x - \sin^2 x = \cos 2x. \] So we can rewrite our integral as: \[ \int \frac{\cos x \, dx}{\sqrt{\cos 2x}}. \] ### Step 4: Use Substitution Let \( t = \sin x \). Then, \( dt = \cos x \, dx \). The integral becomes: \[ \int \frac{dt}{\sqrt{1 - t^2}}. \] ### Step 5: Solve the Integral The integral \( \int \frac{dt}{\sqrt{1 - t^2}} \) is known to be: \[ \sin^{-1}(t) + C. \] ### Step 6: Back Substitute Substituting back \( t = \sin x \): \[ \sin^{-1}(\sin x) + C = x + C. \] ### Step 7: Compare with Given Expression Now, we need to compare this result with the given expression: \[ \frac{1}{\lambda} \sin^{-1}(\lambda \sin x) + C. \] From the expression, we can see that: \[ \sin^{-1}(\lambda \sin x) = \lambda \sin^{-1}(\sin x). \] ### Step 8: Find \( \lambda \) To match the coefficients, we need: \[ \frac{1}{\lambda} = \frac{1}{\sqrt{2}} \implies \lambda = \sqrt{2}. \] Thus, the value of \( \lambda \) is: \[ \lambda = \sqrt{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(1-tan^(2)x))dx

int(dx)/(sqrt(1+sin x))

int(1)/(sqrt(1-sin x))dx

int(1)/(sqrt(tan x))dx

Let J=int_(0)^(1)cot^(-1)(1-x+x^(2))dx and K= int_(0)^(1)tan^(-1)xdx .If J=lambda K (lambda in N) , then lambda equals

int (1-tan^2x)/(1+tan^2x) dx

int(dx)/(sqrt(1-x^(2))(sin^(-1)x)^(2))

int sqrt(1+sin(x/2))dx=

int sqrt(1+sin (x/2))dx

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int (dx)/sqrt(1-tan^2 x)=1/lambda sin^-1 (lambdasinx)+C,then lambda=

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |