Home
Class 12
MATHS
int (dx )/(""^(3) sqrt(x ^(5//2) (x+1)^(...

`int (dx )/(""^(3) sqrt(x ^(5//2) (x+1)^(7//2)))` is equal to:

A

`-((x-1)/(x))^(1//6)+C`

B

`6 ((x+1)/(x )) ^(-1//6)+C`

C

`((x)/(x+1)) ^(5//6) +C`

D

`-((x)/(x+1)) ^(5//6) +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{\sqrt[3]{x^{\frac{5}{2}}(x+1)^{\frac{7}{2}}}} \] we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ \int \frac{dx}{\sqrt[3]{x^{\frac{5}{2}}(x+1)^{\frac{7}{2}}}} = \int \frac{dx}{(x^{\frac{5}{2}}(x+1)^{\frac{7}{2}})^{\frac{1}{3}}} \] This simplifies to: \[ \int \frac{dx}{x^{\frac{5}{6}}(x+1)^{\frac{7}{6}}} \] ### Step 2: Substitution Next, we will use the substitution \( t = \frac{x}{x+1} \). This implies: \[ x = \frac{t}{1-t} \] Differentiating both sides gives: \[ dx = \frac{1}{(1-t)^2} dt \] ### Step 3: Change of Variables Now we need to express \( x^{\frac{5}{6}} \) and \( (x+1)^{\frac{7}{6}} \) in terms of \( t \): 1. \( x + 1 = \frac{t}{1-t} + 1 = \frac{t + (1-t)}{1-t} = \frac{1}{1-t} \) 2. Therefore, \( (x+1)^{\frac{7}{6}} = \left(\frac{1}{1-t}\right)^{\frac{7}{6}} = (1-t)^{-\frac{7}{6}} \) Now we can express \( x^{\frac{5}{6}} \): \[ x^{\frac{5}{6}} = \left(\frac{t}{1-t}\right)^{\frac{5}{6}} = \frac{t^{\frac{5}{6}}}{(1-t)^{\frac{5}{6}}} \] ### Step 4: Substitute Back into the Integral Substituting these back into the integral, we have: \[ \int \frac{dx}{x^{\frac{5}{6}}(x+1)^{\frac{7}{6}}} = \int \frac{\frac{1}{(1-t)^2} dt}{\frac{t^{\frac{5}{6}}}{(1-t)^{\frac{5}{6}}} (1-t)^{-\frac{7}{6}}} \] This simplifies to: \[ \int \frac{(1-t)^{\frac{7}{6}} dt}{t^{\frac{5}{6}}} \] ### Step 5: Simplify the Integral This can be simplified to: \[ \int t^{-\frac{5}{6}} (1-t)^{\frac{7}{6}} dt \] ### Step 6: Integration Now we can integrate using the Beta function or standard integral techniques. The integral can be expressed in terms of the Beta function \( B(x,y) \): \[ \int t^{-\frac{5}{6}} (1-t)^{\frac{7}{6}} dt = B\left(\frac{1}{6}, \frac{8}{6}\right) \] ### Step 7: Back Substitute After integrating, we will need to substitute back for \( t \): \[ t = \frac{x}{x+1} \] ### Final Result The final result will be: \[ 6 \left(\frac{x}{x+1}\right)^{\frac{1}{6}} + C \] Where \( C \) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

int_(1)^(sqrt(3)) (dx)/(1+x^(2)) is equal to

int ( dx)/( sqrt( 2x - x^(2))) is equal to

int(x^(7//2))/(sqrt(x^(9)))dx equal to

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

int(dx)/((x^3-1)^(2/3)x^2) is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int(dx)/(sqrt(1-5x^(2)))

int (x^(2) +1)/(sqrt(x^(2)+3))dx

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int (dx )/(""^(3) sqrt(x ^(5//2) (x+1)^(7//2))) is equal to:

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |