Home
Class 12
MATHS
If In=int(sinx)^ndx, n in N, then 5I4-6I...

If `I_n=int(sinx)^ndx, n in N`, then `5I_4-6I_6` is equal to

A

`sin x . (cos x )^(5) +C`

B

`sin 2x cos 2x +C`

C

`(sin 2x)/(8) [1+ cos ^(2) 2x -2 cos 2x ] +C`

D

`(sin 2x )/(8) [1+ cos ^(2) 2x + 2 cos 2x] +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 5I_4 - 6I_6 \), where \( I_n = \int \sin^n x \, dx \), we will use the reduction formula for the integral of sine raised to a power. ### Step-by-Step Solution: 1. **Reduction Formula**: The reduction formula for \( I_n = \int \sin^n x \, dx \) is given by: \[ I_n = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} I_{n-2} \] 2. **Calculate \( I_4 \)**: - Using the reduction formula for \( n = 4 \): \[ I_4 = -\frac{1}{4} \sin^3 x \cos x + \frac{3}{4} I_2 \] 3. **Calculate \( I_2 \)**: - Using the reduction formula for \( n = 2 \): \[ I_2 = -\frac{1}{2} \sin x \cos x + \frac{1}{2} I_0 \] - Since \( I_0 = \int dx = x + C \), we have: \[ I_2 = -\frac{1}{2} \sin x \cos x + \frac{1}{2} (x + C) \] 4. **Substituting \( I_2 \) back into \( I_4 \)**: - Substitute \( I_2 \) into the equation for \( I_4 \): \[ I_4 = -\frac{1}{4} \sin^3 x \cos x + \frac{3}{4} \left(-\frac{1}{2} \sin x \cos x + \frac{1}{2} (x + C)\right) \] - Simplifying this gives: \[ I_4 = -\frac{1}{4} \sin^3 x \cos x - \frac{3}{8} \sin x \cos x + \frac{3}{8} (x + C) \] 5. **Calculate \( I_6 \)**: - Using the reduction formula for \( n = 6 \): \[ I_6 = -\frac{1}{6} \sin^5 x \cos x + \frac{5}{6} I_4 \] 6. **Substituting \( I_4 \) back into \( I_6 \)**: - Substitute \( I_4 \) into the equation for \( I_6 \): \[ I_6 = -\frac{1}{6} \sin^5 x \cos x + \frac{5}{6} \left(-\frac{1}{4} \sin^3 x \cos x - \frac{3}{8} \sin x \cos x + \frac{3}{8} (x + C)\right) \] 7. **Combine \( 5I_4 - 6I_6 \)**: - Now, we compute \( 5I_4 - 6I_6 \): \[ 5I_4 = 5\left(-\frac{1}{4} \sin^3 x \cos x - \frac{3}{8} \sin x \cos x + \frac{3}{8} (x + C)\right) \] - And for \( 6I_6 \): \[ 6I_6 = 6\left(-\frac{1}{6} \sin^5 x \cos x + \frac{5}{6} I_4\right) \] - Combine these two to find \( 5I_4 - 6I_6 \). 8. **Final Simplification**: - After simplification, we find that: \[ 5I_4 - 6I_6 = \sin^5 x \cos x + C \] ### Final Answer: Thus, \( 5I_4 - 6I_6 = \sin^5 x \cos x + C \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If I_n=intsin^n xdxn in N , t h e n5I_4-6I_6 is equal to s in x(cosx)^5+c b. sin2x cos2x+c c. (s in2x)/8(cos^2 2x+1-2cos2x)+c d. (s in2x)/8(cos^2 2x+1+2cos2x)+c

If I_n=int_0^(pi/2) x^n sinx dx , then [I_4+12I_2] is equal to (A) 4pi (B) 3(pi/2)^3 (C) (pi/2)^2 (D) 4(pi/2)^3

If I_(n)-int(lnx)^(n)dx, then I_(10)+10I_(9) is equal to (where C is the constant of integration)

If I_n=int( lnx)^n dx then I_n+nI_(n-1)

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If In=int(sinx)^ndx, n in N, then 5I4-6I6 is equal to

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |