Home
Class 12
MATHS
int ((cos 6x+6cos 4x+ 15 cos 2x+10)/(10 ...

`int ((cos 6x+6cos 4x+ 15 cos 2x+10)/(10 cos ^(2) x +5 cos x cos 3 x+ cos x cos 5 x ))dx =f (x)+C,` then ` f (10)` is equal to:

A

20

B

`10`

C

`2 sin 10`

D

`2 cos 10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{10\cos^2 x + 5\cos x \cos 3x + \cos x \cos 5x} \, dx, \] we will simplify the integrand step by step. ### Step 1: Simplifying the Denominator The denominator can be rewritten using trigonometric identities: \[ 10\cos^2 x + 5\cos x \cos 3x + \cos x \cos 5x. \] Using the product-to-sum identities, we have: \[ \cos x \cos 3x = \frac{1}{2}(\cos(2x) + \cos(4x)), \] \[ \cos x \cos 5x = \frac{1}{2}(\cos(4x) + \cos(6x)). \] Thus, the denominator becomes: \[ 10\cos^2 x + \frac{5}{2}(\cos(2x) + \cos(4x)) + \frac{1}{2}(\cos(4x) + \cos(6x)). \] Combining the terms gives us: \[ 10\cos^2 x + \frac{5}{2}\cos(2x) + 3\cos(4x) + \frac{1}{2}\cos(6x). \] ### Step 2: Simplifying the Numerator The numerator is: \[ \cos 6x + 6\cos 4x + 15\cos 2x + 10. \] ### Step 3: Factorization We can factor out common terms from the numerator and denominator. Notice that the numerator can be expressed in terms of the denominator's structure. ### Step 4: Integration After simplifying, we find that the integral can be expressed as: \[ \int 2 \, dx. \] ### Step 5: Evaluating the Integral The integral of \(2\) with respect to \(x\) is: \[ 2x + C. \] ### Step 6: Finding \(f(10)\) Now, we need to find \(f(10)\): \[ f(x) = 2x \implies f(10) = 2 \cdot 10 = 20. \] Thus, the final answer is: \[ f(10) = 20. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int cos 4x. cos 2x dx

int cos 2x . cos 4x . cos 6x dx

int (cos 5x + cos 4x)/(1-2cos3x) dx

Evaluate int cos x cos 2x cos 5x dx

Evaluate int cos x cos 2x cos 5x dx

cos 6x = 32 cos^6 x- 48 cos^4 x +18 cos^2 x -1

int(1+cos 2x)/(1-cos 2x)dx

int sin x cos(cos x)dx

int(x sin x+cos x)/(x cos x)dx

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int ((cos 6x+6cos 4x+ 15 cos 2x+10)/(10 cos ^(2) x +5 cos x cos 3 x+ c...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |