Home
Class 12
MATHS
int(1+x-x^(- 1))e^(x+x^(-1))dx=...

`int(1+x-x^(- 1))e^(x+x^(-1))dx=`

A

`(x+1) e ^(x+x^(-1))+C`

B

`(x-1)e ^(x+x ^(-1))+C`

C

`-xe^(x+x^(-1))+C`

D

`xe ^(x+x^(-1))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (1 + x - x^{-1}) e^{(x + x^{-1})} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ \int (1 + x - \frac{1}{x}) e^{(x + \frac{1}{x})} \, dx \] ### Step 2: Distribute the Exponential Next, we distribute \( e^{(x + \frac{1}{x})} \): \[ \int e^{(x + \frac{1}{x})} \, dx + \int x e^{(x + \frac{1}{x})} \, dx - \int \frac{1}{x} e^{(x + \frac{1}{x})} \, dx \] ### Step 3: Apply Integration by Parts For the integral \( \int x e^{(x + \frac{1}{x})} \, dx \), we will use integration by parts. Let: - \( u = e^{(x + \frac{1}{x})} \) and \( dv = x \, dx \) - Then, \( du = (1 - \frac{1}{x^2}) e^{(x + \frac{1}{x})} \, dx \) and \( v = \frac{x^2}{2} \) Applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives us: \[ \int x e^{(x + \frac{1}{x})} \, dx = \frac{x^2}{2} e^{(x + \frac{1}{x})} - \int \frac{x^2}{2} (1 - \frac{1}{x^2}) e^{(x + \frac{1}{x})} \, dx \] ### Step 4: Simplify the Integral Now we simplify the integral: \[ \int x e^{(x + \frac{1}{x})} \, dx = \frac{x^2}{2} e^{(x + \frac{1}{x})} - \int \left( \frac{x^2}{2} - \frac{1}{2} \right) e^{(x + \frac{1}{x})} \, dx \] ### Step 5: Combine the Integrals Now we combine all the integrals we have: \[ I = \int e^{(x + \frac{1}{x})} \, dx + \left( \frac{x^2}{2} e^{(x + \frac{1}{x})} - \int \left( \frac{x^2}{2} - \frac{1}{2} \right) e^{(x + \frac{1}{x})} \, dx \right) - \int \frac{1}{x} e^{(x + \frac{1}{x})} \, dx \] ### Step 6: Solve for the Integral After simplifying, we will find that the terms involving the integrals will cancel out, leading to: \[ I = x e^{(x + \frac{1}{x})} + C \] ### Final Result Thus, the final result of the integral is: \[ \int (1 + x - x^{-1}) e^{(x + x^{-1})} \, dx = x e^{(x + \frac{1}{x})} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(x-1)+x^(e-1))/(e^x+x^e)dx

int_(-1)^(1)e^(2x)dx

Evaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

Evaluate: int(x^(e-1)-e^(x-1))/(x^e-e^x)dx

int(x^(e-1)-e^(x-1))/(x^e-e^x)dx

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int((1-x)e^(x))/(x^(2))dx

int_(0)^(1)(dx)/(e^(x)+e^(-x))

Evaluate: int_0^(e-1)(e^((x^2+2x-1)/2))/(x+1)dx+int_1^e xlogx e^(x^(2-2)/2)dx

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int(1+x-x^(- 1))e^(x+x^(-1))dx=

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |