Home
Class 12
MATHS
int x ^(x)((ln x )^(2) +lnx+1/x) dx is ...

`int x ^(x)((ln x )^(2) +lnx+1/x) ` dx is equal to:

A

`x ^(2) ((ln x)^(2) -1/x +C`

B

`x ^(x) (ln x-x) +C`

C

`x ^(x) ((ln x )^(2))/(2 )+C`

D

`x ^(x)ln x +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x^x \left( (\ln x)^2 + \ln x + \frac{1}{x} \right) dx \), we can follow these steps: ### Step 1: Define the Integral Let \[ I = \int x^x \left( (\ln x)^2 + \ln x + \frac{1}{x} \right) dx \] ### Step 2: Introduce a Substitution Let \[ t = x^x \ln x \] Now, we will differentiate \( t \) with respect to \( x \). ### Step 3: Differentiate \( t \) Using the product rule and properties of logarithms: \[ \ln t = \ln(x^x) + \ln(\ln x) = x \ln x + \ln(\ln x) \] Differentiating both sides with respect to \( x \): \[ \frac{1}{t} \frac{dt}{dx} = \frac{d}{dx}(x \ln x) + \frac{d}{dx}(\ln(\ln x)) \] Using the product rule on \( x \ln x \): \[ \frac{d}{dx}(x \ln x) = \ln x + 1 \] And for \( \ln(\ln x) \): \[ \frac{d}{dx}(\ln(\ln x)) = \frac{1}{\ln x} \cdot \frac{1}{x} \] Thus, we have: \[ \frac{1}{t} \frac{dt}{dx} = \ln x + 1 + \frac{1}{x \ln x} \] ### Step 4: Solve for \( dt \) Multiplying both sides by \( t \): \[ dt = t \left( \ln x + 1 + \frac{1}{x \ln x} \right) dx \] Substituting \( t = x^x \ln x \): \[ dt = x^x \ln x \left( \ln x + 1 + \frac{1}{x \ln x} \right) dx \] ### Step 5: Substitute Back into the Integral From the expression for \( dt \), we can see that: \[ I = \int dt \] ### Step 6: Integrate The integral of \( dt \) is simply: \[ I = t + C = x^x \ln x + C \] ### Final Answer Thus, the integral evaluates to: \[ \int x^x \left( (\ln x)^2 + \ln x + \frac{1}{x} \right) dx = x^x \ln x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int((lnx-1)/((lnx)^(2)+1))^2dx is equal to

int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

int_(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

int x ^(x ^(2)+1) (2ln x+1)dx

int cot x log ( sin x ) dx is equal to

inte^(3 log x ) (x^(4)+ 1) ^(-1) dx is equal to

int {((lnx-1))/(1+(lnx)^2)}^2 dx is equal to

int ( sin ( log x) + cos ( log x ) dx is equal to

int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ( log x )^(6))/( 6) + C c) ((log x )^(6))/( 3x^(2)) + C d) none of these

int_1^2 x^(2x^2+1)(1+2lnx)dx is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int x ^(x)((ln x )^(2) +lnx+1/x) dx is equal to:

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |