Home
Class 12
MATHS
int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=...

`int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=`

A

`sin 2x + C`

B

` (sin 2x)/(2) +C`

C

`(-sin 2x)/(2) +C`

D

`-2 sin 2x +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} \, dx, \] we will follow these steps: ### Step 1: Rewrite the numerator using the difference of squares We can express \(\sin^8 x - \cos^8 x\) as a difference of squares: \[ \sin^8 x - \cos^8 x = (\sin^4 x - \cos^4 x)(\sin^4 x + \cos^4 x). \] ### Step 2: Further simplify \(\sin^4 x - \cos^4 x\) We can apply the difference of squares again to \(\sin^4 x - \cos^4 x\): \[ \sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x). \] Since \(\sin^2 x + \cos^2 x = 1\), we have: \[ \sin^4 x - \cos^4 x = \sin^2 x - \cos^2 x. \] ### Step 3: Substitute back into the integral Now we substitute this back into our integral: \[ \int \frac{(\sin^2 x - \cos^2 x)(\sin^4 x + \cos^4 x)}{1 - 2\sin^2 x \cos^2 x} \, dx. \] ### Step 4: Simplify the denominator The denominator \(1 - 2\sin^2 x \cos^2 x\) can be rewritten using the identity: \[ 1 - 2\sin^2 x \cos^2 x = \sin^2 x + \cos^2 x - 2\sin^2 x \cos^2 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = \sin^4 x + \cos^4 x. \] ### Step 5: Substitute the denominator Now, substituting this back into the integral gives: \[ \int \frac{(\sin^2 x - \cos^2 x)(\sin^4 x + \cos^4 x)}{\sin^4 x + \cos^4 x} \, dx. \] ### Step 6: Cancel out terms The \(\sin^4 x + \cos^4 x\) terms cancel out: \[ \int (\sin^2 x - \cos^2 x) \, dx. \] ### Step 7: Rewrite the integrand We can rewrite \(\sin^2 x - \cos^2 x\) using the double angle identity: \[ \sin^2 x - \cos^2 x = -\cos 2x. \] ### Step 8: Integrate Now we can integrate: \[ \int -\cos 2x \, dx = -\frac{\sin 2x}{2} + C. \] ### Final Answer Thus, the final answer is: \[ -\frac{\sin 2x}{2} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions (sin^8-cos^8x)/(1-2sin^2xcos^2x)

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

Evaluate: (i) int(sin^3x-cos^3x)/(sin^2xcos^2x)\ dx (ii) int(5cos^3x+6sin^3x)/(2sin^2xcos^2x)\ dx

Integrate the functions (sin^3x+cos^3x)/(sin^2xcos^2x)

Integrate the functions (sin^3x+cos^3x)/(sin^2xcos^2x)

Integrate the functions (sin^3x+cos^3x)/(sin^2xcos^2x)

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

Evaluate the following integral : int(5cos^3x+6sin^3x)/(2sin^2xcos^2x)dx

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |