Home
Class 12
MATHS
int \ {f(x)*g^(prime)(x)-f^(prime)(x)g(x...

`int \ {f(x)*g^(prime)(x)-f^(prime)(x)g(x))/(f(x)*g(x)){logg(x)-logf(x)} \ dx`

A

`log"" ((g(x ))/(f (x)))+C`

B

`1/2 ((g (x ))/(f (x)))^(2)+C`

C

`1/2 (log ((g (x ))/(f (x))))^(2)+C`

D

`log (((g (x))/(f (x)))^(2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{f(x) g'(x) - f'(x) g(x)}{f(x) g(x) \left( \log g(x) - \log f(x) \right)} \, dx, \] we will follow these steps: ### Step 1: Simplify the logarithmic expression Using the property of logarithms, we can rewrite the expression \(\log g(x) - \log f(x)\) as: \[ \log \left( \frac{g(x)}{f(x)} \right). \] Thus, the integral becomes: \[ \int \frac{f(x) g'(x) - f'(x) g(x)}{f(x) g(x) \log \left( \frac{g(x)}{f(x)} \right)} \, dx. \] **Hint:** Remember that \(\log a - \log b = \log \left( \frac{a}{b} \right)\). ### Step 2: Substitute \(t\) Let \[ t = \log \left( \frac{g(x)}{f(x)} \right). \] Now, differentiate \(t\): \[ dt = \frac{1}{g(x)} g'(x) - \frac{1}{f(x)} f'(x) \, dx. \] Rearranging gives: \[ dt = \left( \frac{g'(x)}{g(x)} - \frac{f'(x)}{f(x)} \right) \, dx. \] ### Step 3: Express \(f(x) g'(x) - f'(x) g(x)\) in terms of \(dt\) From the expression for \(dt\), we can rewrite \(f(x) g'(x) - f'(x) g(x)\) in terms of \(dt\): \[ f(x) g'(x) - f'(x) g(x) = f(x) g(x) \left( \frac{g'(x)}{g(x)} - \frac{f'(x)}{f(x)} \right) = f(x) g(x) dt. \] ### Step 4: Substitute back into the integral Now substitute this back into the integral: \[ \int \frac{f(x) g(x) dt}{f(x) g(x) t} = \int \frac{dt}{t}. \] ### Step 5: Integrate The integral of \(\frac{1}{t}\) is: \[ \int \frac{dt}{t} = \log |t| + C. \] ### Step 6: Substitute \(t\) back Now substitute \(t\) back: \[ \log |t| + C = \log \left| \log \left( \frac{g(x)}{f(x)} \right) \right| + C. \] ### Final Result Thus, the final result of the integral is: \[ \frac{1}{2} \left( \log \left( \frac{g(x)}{f(x)} \right) \right)^2 + C. \] ### Conclusion The correct option is: \[ \frac{1}{2} \left( \log \left( \frac{g(x)}{f(x)} \right) \right)^2 + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Suppose f and g are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all x and f^(prime) and g' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x)) is equal (a) (-2f^(prime)(x))/f (b) (2g^(prime)(x))/(g(x)) (c) (-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

int[f(a x+b)]^nf^(prime)(a x+b)dx

Let f be a twice differentiable function such that f^(prime prime)(x)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

If (x-1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of (a) f(x)g(x) (b) -f\ (x)+\ g(x) (c) f(x)-g(x) (d) {f(x)+g(x)}g(x)

Let f(x) be differentiable function and g(x) be twice differentiable function. Zeros of f(x),g^(prime)(x) be a,b respectively, (a

If f(x),g(x) and h(x) are three polynomials of degree 2, then prove that phi(x) = |[f(x),g(x),h(x)],[f ^ (prime)(x),g^(prime)(x),h^(prime)(x)],[f^(primeprime)(x),g^(primeprime)(x),h^(primeprime)(x)]| is a constant polynomial.

Let F(x)=f(x)g(x)h(x) for all real x ,w h e r ef(x),g(x),a n dh(x) are differentiable functions. At some point x_0,F^(prime)(x_0)=21 F(x_0),f^(prime)(x_0)4f(x_0),g^(prime)(x_0)=-7g(x_0), then the value of g^(prime)(1) is ________

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int \ {f(x)*g^(prime)(x)-f^(prime)(x)g(x))/(f(x)*g(x)){logg(x)-logf(x)...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |