Home
Class 12
MATHS
Maximum vlaue of the function f (x) = pi...

Maximum vlaue of the function `f (x) = pi^(2) int _(0)^(1)t sin (x+ pi t ) dt` over all real number x:

A

`sqrt(pi^(2)+1)`

B

`sqrt(pi^(2)+2)`

C

`sqrt(pi^(2)+3)`

D

`sqrt(pi^(2)+4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \[ f(x) = \pi^2 \int_0^1 t \sin(x + \pi t) \, dt \] we will follow these steps: ### Step 1: Evaluate the integral We start by evaluating the integral \[ \int_0^1 t \sin(x + \pi t) \, dt. \] Using integration by parts, let: - \( u = t \) → \( du = dt \) - \( dv = \sin(x + \pi t) dt \) → \( v = -\frac{1}{\pi} \cos(x + \pi t) \) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du, \] we have: \[ \int_0^1 t \sin(x + \pi t) \, dt = \left[ -\frac{t}{\pi} \cos(x + \pi t) \right]_0^1 + \frac{1}{\pi} \int_0^1 \cos(x + \pi t) \, dt. \] ### Step 2: Evaluate the boundary terms Calculating the boundary terms: \[ \left[ -\frac{t}{\pi} \cos(x + \pi t) \right]_0^1 = -\frac{1}{\pi} \cos(x + \pi) + 0 = \frac{1}{\pi} \cos(x). \] ### Step 3: Evaluate the remaining integral Now we need to evaluate \[ \int_0^1 \cos(x + \pi t) \, dt. \] This integral can be computed as follows: \[ \int_0^1 \cos(x + \pi t) \, dt = \left[ \frac{1}{\pi} \sin(x + \pi t) \right]_0^1 = \frac{1}{\pi} (\sin(x + \pi) - \sin(x)) = \frac{1}{\pi} (-\sin(x) - \sin(x)) = -\frac{2}{\pi} \sin(x). \] ### Step 4: Combine results Combining the results from the boundary terms and the integral, we have: \[ \int_0^1 t \sin(x + \pi t) \, dt = \frac{1}{\pi} \cos(x) - \frac{2}{\pi^2} \sin(x). \] ### Step 5: Substitute back into \(f(x)\) Now substituting back into \(f(x)\): \[ f(x) = \pi^2 \left( \frac{1}{\pi} \cos(x) - \frac{2}{\pi^2} \sin(x) \right) = \pi \cos(x) - 2 \sin(x). \] ### Step 6: Find the maximum value To find the maximum value of \[ f(x) = \pi \cos(x) - 2 \sin(x), \] we can express this in the form \(a \cos(x) + b \sin(x)\) where \(a = \pi\) and \(b = -2\). The maximum value of \(a \cos(x) + b \sin(x)\) is given by \[ \sqrt{a^2 + b^2}. \] Calculating this gives: \[ \sqrt{\pi^2 + (-2)^2} = \sqrt{\pi^2 + 4}. \] ### Final Answer Thus, the maximum value of the function \(f(x)\) is \[ \sqrt{\pi^2 + 4}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The maximum value of f(x) =int_(0)^(1) t sin (x+pi t)dt is

Difference between the greatest and least values opf the function f (x) = int _(0)^(x) (cos ^(2) t + cos t +2) dt in the interval [0, 2pi] is K pi, then K is equal to:

" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

The difference between the greateset ahnd least vlaue of the function f(x)=int_(0)^(x) (6t^2-24)" dt on " [1,3] " dt on " [1,3] is

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

The maximum value of cos (int_(2x)^(x^(2)) e^t sin^2 " t dt ")

The least value of the function phi(x)=overset(x)underset(5pi//4)int (3sin t+4 cos t)dt on the integral [5pi//4,4pi//3] , is

The function f(x)=int_(0)^(x) log _(|sin t|)(sin t + (1)/(2)) dt , where x in (0,2pi) , then f(x) strictly increases in the interval

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Maximum vlaue of the function f (x) = pi^(2) int (0)^(1)t sin (x+ pi t...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |