Home
Class 12
MATHS
Let 'f is a function, continuous on [0,1...

Let 'f is a function, continuous on `[0,1]` such that `f(x) leq sqrt5 AA x in [0,1/2] and f(x) leq 2/x AA x in [1/2,1]` then smallest 'a' for which `int_0^1 f(x)dx leq a` holds for all 'f' is

A

`sqrt5`

B

`(sqrt5)/(2) + 2 ln 2`

C

`2+ ln ((sqrt5)/(2))`

D

`2+2ln ((sqrt5)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral of the function \( f(x) \) over the interval \([0, 1]\) given the constraints on \( f(x) \). ### Step-by-Step Solution: 1. **Define the Function \( f(x) \)**: Given the conditions: - For \( x \in [0, \frac{1}{2}] \), \( f(x) \leq \sqrt{5} \) - For \( x \in [\frac{1}{2}, 1] \), \( f(x) \leq \frac{2}{x} \) We can define \( f(x) \) as: \[ f(x) = \begin{cases} \sqrt{5} & \text{for } x \in [0, \frac{1}{2}] \\ \frac{2}{x} & \text{for } x \in [\frac{1}{2}, 1] \end{cases} \] 2. **Set Up the Integral**: We need to compute the integral: \[ \int_0^1 f(x) \, dx = \int_0^{\frac{1}{2}} f(x) \, dx + \int_{\frac{1}{2}}^1 f(x) \, dx \] Substituting the defined function: \[ = \int_0^{\frac{1}{2}} \sqrt{5} \, dx + \int_{\frac{1}{2}}^1 \frac{2}{x} \, dx \] 3. **Evaluate the First Integral**: The first integral is: \[ \int_0^{\frac{1}{2}} \sqrt{5} \, dx = \sqrt{5} \cdot \left[ x \right]_0^{\frac{1}{2}} = \sqrt{5} \cdot \left( \frac{1}{2} - 0 \right) = \frac{\sqrt{5}}{2} \] 4. **Evaluate the Second Integral**: The second integral is: \[ \int_{\frac{1}{2}}^1 \frac{2}{x} \, dx = 2 \cdot \left[ \ln |x| \right]_{\frac{1}{2}}^1 = 2 \cdot \left( \ln(1) - \ln\left(\frac{1}{2}\right) \right) = 2 \cdot (0 + \ln(2)) = 2 \ln(2) \] 5. **Combine the Results**: Now, we combine both results: \[ \int_0^1 f(x) \, dx = \frac{\sqrt{5}}{2} + 2 \ln(2) \] 6. **Determine the Smallest \( a \)**: We need to find the smallest \( a \) such that: \[ \int_0^1 f(x) \, dx \leq a \] Thus, the smallest \( a \) is: \[ a = \frac{\sqrt{5}}{2} + 2 \ln(2) \] ### Final Answer: The smallest value of \( a \) for which \( \int_0^1 f(x) \, dx \leq a \) holds for all \( f \) is: \[ \boxed{\frac{\sqrt{5}}{2} + 2 \ln(2)} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x/7 AA x in R, then f(42) is

Let f : [0, 1] rarr [0, 1] be a continuous function such that f (f (x))=1 for all x in[0,1] then:

If f is continuous on [0,1] such that f(x)+f(x+1/2)=1 and int_0^1f(x)dx=k , then value of 2k is 0 (2) 1 (3) 2 (4) 3

Let f(x) is a function continuous for all x in R except at x = 0 such that f'(x) lt 0, AA x in (-oo, 0) and f'(x) gt 0, AA x in (0, oo) . If lim_(x rarr 0^(+)) f(x) = 3, lim_(x rarr 0^(-)) f(x) = 4 and f(0) = 5 , then the image of the point (0, 1) about the line, y.lim_(x rarr 0) f(cos^(3) x - cos^(2) x) = x. lim_(x rarr 0) f(sin^(2) x - sin^(3) x) , is

Let f: (-2, 2) rarr (-2, 2) be a continuous function such that f(x) = f(x^2) AA Χin d_f, and f(0) = 1/2 , then the value of 4f(1/4) is equal to

If f(x) is continuous and differentiable in x in [-7,0] and f'(x) le 2 AA x in [-7,0] , also f(-7)=-3 then range of f(-1)+f(0)

Let f(x) =int_1^x e^t/tdt,x in R^+ . Then complete set of valuesof x for which f(x) leq In x is

Let f(x) be a continuous function, AA x in R, f(0) = 1 and f(x) ne x for any x in R , then show f(f(x)) gt x, AA x in R^(+)

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f(x)=2x+1. AA x in R , then the solution of the equation f(x)=f^(-1)(x) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let 'f is a function, continuous on [0,1] such that f(x) leq sqrt5 ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |