Home
Class 12
MATHS
Let a function f:R to R be defined as f ...

Let a function `f:R to R` be defined as `f (x) =x+ sin x.` The value of `int _(0) ^(2pi)f ^(-1)(x) dx` will be:

A

`2pi^(2)`

B

`2pi^(2)-2`

C

`2x ^(2) +2`

D

`pi^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{0}^{2\pi} f^{-1}(x) \, dx \) where \( f(x) = x + \sin x \). ### Step-by-Step Solution: 1. **Determine the function and its limits:** We have \( f(x) = x + \sin x \). First, we need to find the values of \( f(x) \) at the limits of integration: - Calculate \( f(0) \): \[ f(0) = 0 + \sin(0) = 0 \] - Calculate \( f(2\pi) \): \[ f(2\pi) = 2\pi + \sin(2\pi) = 2\pi + 0 = 2\pi \] Thus, the function \( f(x) \) maps the interval \( [0, 2\pi] \) to itself. 2. **Using the property of inverse functions:** We can use the property of integrals involving inverse functions: \[ \int_{a}^{b} f^{-1}(x) \, dx + \int_{f^{-1}(a)}^{f^{-1}(b)} f(x) \, dx = b \cdot f^{-1}(b) - a \cdot f^{-1}(a) \] Here, \( a = 0 \) and \( b = 2\pi \). Since \( f(0) = 0 \) and \( f(2\pi) = 2\pi \), we have \( f^{-1}(0) = 0 \) and \( f^{-1}(2\pi) = 2\pi \). 3. **Set up the equation:** We can write: \[ \int_{0}^{2\pi} f^{-1}(x) \, dx + \int_{0}^{2\pi} f(x) \, dx = 2\pi \cdot 2\pi - 0 \cdot 0 \] This simplifies to: \[ \int_{0}^{2\pi} f^{-1}(x) \, dx + \int_{0}^{2\pi} f(x) \, dx = 4\pi^2 \] 4. **Evaluate \( \int_{0}^{2\pi} f(x) \, dx \):** We need to compute \( \int_{0}^{2\pi} (x + \sin x) \, dx \): \[ \int_{0}^{2\pi} (x + \sin x) \, dx = \int_{0}^{2\pi} x \, dx + \int_{0}^{2\pi} \sin x \, dx \] - Calculate \( \int_{0}^{2\pi} x \, dx \): \[ \int_{0}^{2\pi} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{2\pi} = \frac{(2\pi)^2}{2} - 0 = 2\pi^2 \] - Calculate \( \int_{0}^{2\pi} \sin x \, dx \): \[ \int_{0}^{2\pi} \sin x \, dx = [-\cos x]_{0}^{2\pi} = -\cos(2\pi) + \cos(0) = -1 + 1 = 0 \] Thus, \[ \int_{0}^{2\pi} f(x) \, dx = 2\pi^2 + 0 = 2\pi^2 \] 5. **Substitute back to find \( \int_{0}^{2\pi} f^{-1}(x) \, dx \):** Now we substitute back into our equation: \[ \int_{0}^{2\pi} f^{-1}(x) \, dx + 2\pi^2 = 4\pi^2 \] This gives: \[ \int_{0}^{2\pi} f^{-1}(x) \, dx = 4\pi^2 - 2\pi^2 = 2\pi^2 \] ### Final Answer: Thus, the value of \( \int_{0}^{2\pi} f^{-1}(x) \, dx \) is \( 2\pi^2 \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let the funciton f:R to R be defined by f(x)=2x+sin x . Then, f is

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

A function f: R to R is defined as f(x)=4x-1, x in R, then prove that f is one - one.

Let a function f:R to R be defined by f(x)=2x+cosx+sinx " for " x in R . Then find the nature of f(x) .

Let f: R->R be defined as f(x)=x^2+1 . Find: f^(-1)(10)

The function f : R -> R is defined by f (x) = (x-1) (x-2) (x-3) is

Let f:R to R be a function defined b f(x)=cos(5x+2). Then,f is

The function f:R→R defined by f(x)=(x−1)(x−2)(x−3) is

The function f:R to R is defined by f(x)=cos^(2)x+sin^(4)x for x in R . Then the range of f(x) is

Let the function f:R to R be defined by f(x)=cos x, AA x in R. Show that f is neither one-one nor onto.

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let a function f:R to R be defined as f (x) =x+ sin x. The value of in...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |