Home
Class 12
MATHS
Let f :R ^(+) to R be a differentiable f...

Let `f :R ^(+) to R` be a differentiable function with `f (1)=3` and satisfying :
`int _(1) ^(xy) f(t) dt =y int_(1) ^(x) f (t) dt +x int_(1) ^(y) f (t) dt AA x, y in R^(+),` then `f (e) =`

A

3

B

4

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given integral equation and find the value of \( f(e) \). ### Step 1: Write down the given equation We start with the equation: \[ \int_{1}^{xy} f(t) \, dt = y \int_{1}^{x} f(t) \, dt + x \int_{1}^{y} f(t) \, dt \] for all \( x, y \in \mathbb{R}^+ \). ### Step 2: Differentiate with respect to \( x \) We differentiate both sides of the equation with respect to \( x \), treating \( y \) as a constant: \[ \frac{d}{dx} \left( \int_{1}^{xy} f(t) \, dt \right) = \frac{d}{dx} \left( y \int_{1}^{x} f(t) \, dt + x \int_{1}^{y} f(t) \, dt \right) \] Using the Fundamental Theorem of Calculus and the chain rule on the left side, we get: \[ f(xy) \cdot y = y f(x) + \int_{1}^{y} f(t) \, dt \] ### Step 3: Substitute \( x = 1 \) Now, we set \( x = 1 \): \[ f(y) \cdot y = y f(1) + \int_{1}^{y} f(t) \, dt \] Since \( f(1) = 3 \), we have: \[ f(y) \cdot y = 3y + \int_{1}^{y} f(t) \, dt \] ### Step 4: Rearranging the equation Rearranging gives us: \[ y f(y) - 3y = \int_{1}^{y} f(t) \, dt \] This simplifies to: \[ y (f(y) - 3) = \int_{1}^{y} f(t) \, dt \] ### Step 5: Differentiate with respect to \( y \) Next, we differentiate both sides with respect to \( y \): \[ f(y) + y f'(y) - 3 = f(y) \] This simplifies to: \[ y f'(y) = 3 \] ### Step 6: Solve for \( f'(y) \) From the equation \( y f'(y) = 3 \), we can solve for \( f'(y) \): \[ f'(y) = \frac{3}{y} \] ### Step 7: Integrate to find \( f(y) \) Integrating \( f'(y) \): \[ f(y) = 3 \ln y + C \] where \( C \) is a constant. ### Step 8: Use the condition \( f(1) = 3 \) Substituting \( y = 1 \): \[ f(1) = 3 \ln(1) + C = 3 \cdot 0 + C = C \] Thus, \( C = 3 \), and we have: \[ f(y) = 3 \ln y + 3 \] ### Step 9: Find \( f(e) \) Now we can find \( f(e) \): \[ f(e) = 3 \ln(e) + 3 = 3 \cdot 1 + 3 = 6 \] ### Final Answer Thus, the value of \( f(e) \) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

Let f be a differentiable function on R and satisfying the integral equation x int_(0)^(x)f(t)dt-int_(0)^(x)tf(x-t)dt=e^(x)-1 AA x in R . Then f(1) equals to ___

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Let f : R to R be a differentiable function and f(1) = 4 . Then, the value of lim_(x to 1)int_(4)^(f(x))(2t)/(x-1)dt is :

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If f(-x)+f(x)=0 then int_a^x f(t) dt is

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

Let f(x) is differentiable function satisfying 2int_(1)^(2)f(tx) dt = x+2, AA x in R Then int_(1)^(2)(8f(8x)-f(x)-21x) dx equal to

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f :R ^(+) to R be a differentiable function with f (1)=3 and satis...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |