Home
Class 12
MATHS
Calculate the reciprocal of the limit l...

Calculate the reciprocal of the limit `lim_(x->oo) int_0^x xe^(t^2-x^2) dt`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the reciprocal of the limit \[ \lim_{x \to \infty} \int_0^x x e^{t^2 - x^2} \, dt. \] Let's denote this limit as \( L \): \[ L = \lim_{x \to \infty} \int_0^x x e^{t^2 - x^2} \, dt. \] ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ L = \lim_{x \to \infty} x \int_0^x e^{t^2 - x^2} \, dt. \] ### Step 2: Analyze the Exponential Term Notice that as \( x \to \infty \), the term \( e^{t^2 - x^2} \) will tend to zero for any fixed \( t \) because \( -x^2 \) will dominate \( t^2 \). Therefore, we can analyze the behavior of the integral. ### Step 3: Change of Variables To better understand the limit, we can perform a change of variables. Let \( u = \frac{t}{x} \), then \( t = ux \) and \( dt = x \, du \). The limits of integration change from \( t = 0 \) to \( t = x \) into \( u = 0 \) to \( u = 1 \). Thus, we have: \[ L = \lim_{x \to \infty} x \int_0^1 e^{(ux)^2 - x^2} x \, du = \lim_{x \to \infty} x^2 \int_0^1 e^{x^2(u^2 - 1)} \, du. \] ### Step 4: Analyze the Integral Now, we analyze the integral: \[ \int_0^1 e^{x^2(u^2 - 1)} \, du. \] As \( x \to \infty \), for \( u < 1 \), \( u^2 - 1 < 0 \), thus \( e^{x^2(u^2 - 1)} \to 0 \). The only contribution to the integral comes from \( u \) very close to 1. ### Step 5: Dominated Convergence Theorem Using the Dominated Convergence Theorem, we can conclude that: \[ \int_0^1 e^{x^2(u^2 - 1)} \, du \to 0 \text{ as } x \to \infty. \] ### Step 6: Conclusion for \( L \) Thus, \[ L = \lim_{x \to \infty} x^2 \cdot 0 = 0. \] ### Step 7: Find the Reciprocal Since \( L = 0 \), the reciprocal is: \[ \frac{1}{L} = \frac{1}{0} \text{ which is undefined.} \] However, if we consider the limit approaching infinity, we can say: \[ \frac{1}{L} \to 0. \] ### Final Answer The reciprocal of the limit is: \[ \text{Reciprocal} = 0. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo)(1-x+x.e^(1/n))^n

Evaluate the following limits : Lim_(x to oo) (sin x)/x

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

Evaluate the following limit: lim_(x->oo) (sin(a+x) + sin(a-x) - 2 sin a)/(x sinx))

int_0^a (sqrt(a^2-x^2)+xe^x)dx

Evaluate the following limits : Lim_(xto oo) x tan (1/x)

Evaluate the following limits : Lim_(x to oo) (3x^(2)+x-1)/(x^(2)-x+7)

Evaluate the following limits : lim_(x to oo) (2 sin x - sin 2 x)/(x^(3))

Evaluate the following limits : Lim_(x to oo) [ x - sqrt((x^(2)+x))]

Evaluate the following limits : Lim_(x to oo) (cos x)/x

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Calculate the reciprocal of the limit lim(x->oo) int0^x xe^(t^2-x^2) ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |