Home
Class 12
MATHS
Let L = lim (n to oo) (((2.1+n))/(1^(2)+...

Let `L = lim _(n to oo) (((2.1+n))/(1^(2)+n .1 +n^(2))+((2.2+n))/(2 ^(2)+n.2+n^(2))+((2.3+n))/(3 ^(2) +n.3 +n^(2))+ ...... + ((2.n +n))/(3n^(2)))` then value of `e ^(L)` is:

A

2

B

3

C

4

D

`3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will follow a structured approach. Let's denote the limit as \( L \): \[ L = \lim_{n \to \infty} \left( \frac{2.1+n}{1^2 + n \cdot 1 + n^2} + \frac{2.2+n}{2^2 + n \cdot 2 + n^2} + \cdots + \frac{2n+n}{3n^2} \right) \] ### Step 1: Rewrite the terms We can rewrite each term in the limit as follows: \[ \frac{2r+n}{r^2 + nr + n^2} \quad \text{for } r = 1, 2, \ldots, n \] ### Step 2: Factor out \( n^2 \) Now, factor \( n^2 \) out of the denominator: \[ \frac{2r+n}{n^2 \left( \frac{r^2}{n^2} + \frac{r}{n} + 1 \right)} = \frac{2r/n + 1}{\frac{r^2}{n^2} + \frac{r}{n} + 1} \] ### Step 3: Sum the terms The limit can be expressed as: \[ L = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{2r/n + 1}{\frac{r^2}{n^2} + \frac{r}{n} + 1} \] ### Step 4: Change of variables Let \( x = \frac{r}{n} \). As \( n \to \infty \), \( r \) runs from \( 1 \) to \( n \), and \( x \) runs from \( 0 \) to \( 1 \). The sum can be approximated by an integral: \[ L = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{2x + 1}{x^2 + x + 1} \cdot \frac{1}{n} \] This becomes: \[ L = \int_0^1 \frac{2x + 1}{x^2 + x + 1} \, dx \] ### Step 5: Evaluate the integral Now, we need to evaluate the integral: \[ \int_0^1 \frac{2x + 1}{x^2 + x + 1} \, dx \] We can split this into two separate integrals: \[ L = \int_0^1 \frac{2x}{x^2 + x + 1} \, dx + \int_0^1 \frac{1}{x^2 + x + 1} \, dx \] ### Step 6: Solve the first integral For the first integral, we can use substitution or partial fractions. The integral can be computed directly or using a known result. ### Step 7: Solve the second integral The second integral can also be computed using substitution or recognizing it as a standard form. ### Step 8: Combine results After evaluating both integrals, we combine the results to find \( L \). ### Step 9: Find \( e^L \) Finally, we compute \( e^L \) to get the final answer. ### Conclusion After evaluating the integrals, we find: \[ e^L = 3 \] Thus, the value of \( e^L \) is \( \boxed{3} \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim _( x to oo) ((1^(2) )/(n ^(3) +1 ^(3))+(2 ^(2))/(n ^(3) +2 ^(3)) + (3 ^(2))/(n ^(3)+ 3 ^(3))+ .... + (4)/(9n)).

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim _(x to oo) (1)/(n ^(3))(sqrt(n ^(2)+1)+2 sqrt(n ^(2) +2 ^(2))+ .... + n sqrt((n ^(2) + n ^(2)))=:

If (1 ^(2) - t _(1)) + (2 ^(2) - t _(2)) + ......+ ( n ^(2) - t _(n)) =(1)/(3) n ( n ^(2) -1 ), then t _(n) is

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let L = lim (n to oo) (((2.1+n))/(1^(2)+n .1 +n^(2))+((2.2+n))/(2 ^(2)...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |