Home
Class 12
MATHS
The value of the definite integral int (...

The value of the definite integral `int _(0) ^(10) ((x-5) +(x-5)^(2) +(c-5)^(3))` dx is:

A

`(125)/(3)`

B

`(250)/(3)`

C

`(125)/(6)`

D

`(250)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ \int_{0}^{10} \left( (x-5) + (x-5)^{2} + (x-5)^{3} \right) dx, \] we will follow these steps: ### Step 1: Rewrite the Integral First, we can express the integral as: \[ I = \int_{0}^{10} \left( (x-5) + (x-5)^{2} + (x-5)^{3} \right) dx. \] ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals which states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \( a = 0 \) and \( b = 10 \). Therefore, we can write: \[ I = \int_{0}^{10} \left( (10-x-5) + (10-x-5)^{2} + (10-x-5)^{3} \right) dx. \] ### Step 3: Simplify the Expression Now, substituting \( 10 - x - 5 \) gives us: \[ 10 - x - 5 = 5 - x. \] So, we can rewrite the integral as: \[ I = \int_{0}^{10} \left( (5-x) + (5-x)^{2} + (5-x)^{3} \right) dx. \] ### Step 4: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{10} \left( (x-5) + (x-5)^{2} + (x-5)^{3} \right) dx \) 2. \( I = \int_{0}^{10} \left( (5-x) + (5-x)^{2} + (5-x)^{3} \right) dx \) Adding these two equations gives: \[ 2I = \int_{0}^{10} \left( (x-5) + (5-x) + (x-5)^{2} + (5-x)^{2} + (x-5)^{3} + (5-x)^{3} \right) dx. \] ### Step 5: Simplify the Combined Integral Notice that \( (x-5) + (5-x) = 0 \). Therefore, the linear terms cancel out. Next, we simplify the squares and cubes: \[ (x-5)^{2} + (5-x)^{2} = 2(x-5)^{2}, \] \[ (x-5)^{3} + (5-x)^{3} = 0. \] Thus, we have: \[ 2I = \int_{0}^{10} 2(x-5)^{2} \, dx. \] ### Step 6: Solve for \( I \) This simplifies to: \[ I = \int_{0}^{10} (x-5)^{2} \, dx. \] Now, we can perform a substitution. Let \( u = x - 5 \), then \( dx = du \). The limits change as follows: - When \( x = 0 \), \( u = -5 \). - When \( x = 10 \), \( u = 5 \). Thus, we have: \[ I = \int_{-5}^{5} u^{2} \, du. \] ### Step 7: Evaluate the Integral Now we evaluate: \[ \int u^{2} \, du = \frac{u^{3}}{3} \Big|_{-5}^{5} = \frac{5^{3}}{3} - \frac{(-5)^{3}}{3} = \frac{125}{3} - \left(-\frac{125}{3}\right) = \frac{125 + 125}{3} = \frac{250}{3}. \] ### Final Answer Thus, the value of the definite integral is: \[ \boxed{\frac{250}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

Evaluate the definite integrals int_0^1 (dx)/(1-x^2)

Evaluate the definite integrals int_2^3(dx)/(x^2-1)

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

Evaluate the definite integrals int_2^3 1/x dx

Evaluate the definite integrals int_(0)^((pi)/(4)tan x)dx

The value of the definite integral, int_0^(pi/2) (sin5x)/sinx dx is

The value of the definite integral int _(0)^(infty) (dx)/((1+x^(a))(1 + x^(2))) (a gt 0) is

The value of the definite integral int_(0)^(2) (sqrt(1+x ^(3))+""^(3) sqrt(x ^(2)+ 2x)) dx is :

The value of the definite integral int _(3)^(7) (cos x ^(2))/(cos x ^(2) + cos ((10) -x )^(2)dx is:

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of the definite integral int (0) ^(10) ((x-5) +(x-5)^(2) +(c...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |