Home
Class 12
MATHS
The value of definite integral int (0)^(...

The value of definite integral `int _(0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2)))` equal to:

A

`(pi)/(16)`

B

`(pi)/(8)`

C

`(pi)/(4)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{0}^{\infty} \frac{dx}{(1 + x^9)(1 + x^2)}, \] we will use the substitution \( x = \tan \theta \). ### Step 1: Substitute \( x = \tan \theta \) When \( x = \tan \theta \), we have: \[ dx = \sec^2 \theta \, d\theta. \] The limits change as follows: - When \( x = 0 \), \( \theta = 0 \). - When \( x \to \infty \), \( \theta \to \frac{\pi}{2} \). Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sec^2 \theta \, d\theta}{(1 + \tan^9 \theta)(1 + \tan^2 \theta)}. \] ### Step 2: Simplify the integral Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sec^2 \theta \, d\theta}{(1 + \tan^9 \theta) \sec^2 \theta} = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{1 + \tan^9 \theta}. \] ### Step 3: Use the property of integrals Next, we will use the property of integrals: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] Here, we have \( a = 0 \) and \( b = \frac{\pi}{2} \), so: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{1 + \tan^9 \theta} = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{1 + \cot^9 \theta}. \] ### Step 4: Rewrite the second integral For the second integral, we can express \( \cot \theta \) in terms of \( \tan \theta \): \[ \cot^9 \theta = \frac{1}{\tan^9 \theta}. \] Thus, we have: \[ \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{1 + \cot^9 \theta} = \int_{0}^{\frac{\pi}{2}} \frac{\tan^9 \theta \, d\theta}{\tan^9 \theta + 1}. \] ### Step 5: Combine both integrals Now we can add both integrals: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + \tan^9 \theta} + \frac{\tan^9 \theta}{\tan^9 \theta + 1} \right) d\theta. \] The expression simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, d\theta = \frac{\pi}{2}. \] ### Step 6: Solve for \( I \) Thus, we find: \[ I = \frac{\pi}{4}. \] ### Conclusion The value of the definite integral is: \[ \int_{0}^{\infty} \frac{dx}{(1 + x^9)(1 + x^2)} = \frac{\pi}{4}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral int _(0)^(infty) (dx)/((1+x^(a))(1 + x^(2))) (a gt 0) is

The value of the integral int _0^oo 1/(1+x^4)dx is

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

Evaluate the definite integrals int_0^1 (dx)/(1-x^2)

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

The value of difinite integral int_(0)^(1)=(dx)/(sqrt((x+1)^(3)(3x+1))) equals

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

Evaluate the definite integrals int-1 1(x+1)dx

Evaluate the definite integrals int_2^3 1/x dx

int_(0)^(oo)(x)/((1+x)(1+x^(2))) dx equals to :

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of definite integral int (0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |