Home
Class 12
MATHS
If int (0)^(1) (sum (r=1) ^(2013)(x)/(x ...

If `int _(0)^(1) (sum _(r=1) ^(2013)(x)/(x ^(2)+r ^(2)) prod_(r=1)^(2013)(x ^(2) +r ^(2) )) dx =1/2 [(prod_(r=1)^(2013)(1+r ^(2)))-k^(2)]` then k=

A

2013

B

2013!

C

`2013^(2)`

D

`2013^(2013)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation, we will follow a systematic approach. The equation we need to evaluate is: \[ \int_0^1 \left( \sum_{r=1}^{2013} \frac{x}{x^2 + r^2} \right) \prod_{r=1}^{2013} (x^2 + r^2) \, dx = \frac{1}{2} \left( \prod_{r=1}^{2013} (1 + r^2) - k^2 \right) \] ### Step 1: Define the integral Let: \[ T = \int_0^1 \left( \sum_{r=1}^{2013} \frac{x}{x^2 + r^2} \right) \prod_{r=1}^{2013} (x^2 + r^2) \, dx \] ### Step 2: Simplify the expression inside the integral We can express \(T\) as: \[ T = \int_0^1 \left( \sum_{r=1}^{2013} \frac{x}{x^2 + r^2} \prod_{s=1}^{2013} (x^2 + s^2) \right) \, dx \] ### Step 3: Use properties of logarithms Taking the logarithm of the product: \[ \log T = \log \left( \prod_{r=1}^{2013} (x^2 + r^2) \right) = \sum_{r=1}^{2013} \log(x^2 + r^2) \] ### Step 4: Differentiate Differentiating both sides with respect to \(x\): \[ \frac{1}{T} \frac{dT}{dx} = \sum_{r=1}^{2013} \frac{2x}{x^2 + r^2} \] ### Step 5: Rearranging the equation This gives us: \[ dT = T \sum_{r=1}^{2013} \frac{2x}{x^2 + r^2} \, dx \] ### Step 6: Integrate Integrate \(dT\) from \(0\) to \(1\): \[ T = \int_0^1 T \sum_{r=1}^{2013} \frac{2x}{x^2 + r^2} \, dx \] ### Step 7: Evaluate the integral We can evaluate the integral: \[ \int_0^1 \frac{x}{x^2 + r^2} \, dx = \frac{1}{2} \log(1 + r^2) \] ### Step 8: Substitute back into the equation Now substituting back into the equation: \[ T = \frac{1}{2} \sum_{r=1}^{2013} \log(1 + r^2) \] ### Step 9: Compare with the given equation Now we can compare this expression with the right-hand side of the original equation: \[ \frac{1}{2} \left( \prod_{r=1}^{2013} (1 + r^2) - k^2 \right) \] ### Step 10: Solve for \(k\) From the comparison, we can find \(k\): \[ k^2 = \prod_{r=1}^{2013} (1 + r^2) - T \] ### Final Result After evaluating and simplifying, we find that: \[ k = \sqrt{\prod_{r=1}^{2013} r^2} = 2013! \] Thus, the value of \(k\) is: \[ \boxed{2013!} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If A= int _(0)^(1) prod_(r=1) ^(2014)(r-x) dx and B =int _(0)^(1) prod _(r =0)^(2013) (r+x) dx, then:

int_(1)^(2013)[(x-1)(x-2)...(x-2013)]dx

The value of 1/(r_(1)^(2))+1/(r_(2)^(2))+1/(r_(2)^(3))+1/(r^(2)) , is

Find the sum sum_(r =1)^(oo) tan^(-1) ((2(2r -1))/(4 + r^(2) (r^(2) -2r + 1)))

If sum_(r=1)^(oo)(1)/((2r-1)^(2))=(pi^(2))/(8) , then sum_(r=1)^(oo) (1)/(r^(2)) is equal to

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If f(n)=prod_(r=1)^(n)cos r,n in N , then

lim_(xrarroo) (sum_(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

The value of prod_(r=1)^(7)cos\ (pi r)/(15) is

If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1))) , then sum_(r = 0)^(9) f(r ) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If int (0)^(1) (sum (r=1) ^(2013)(x)/(x ^(2)+r ^(2)) prod(r=1)^(2013)(...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |