Home
Class 12
MATHS
The value of the definite integral int0^...

The value of the definite integral `int_0^(pi/2) (dx)/(tanx+cotx+cosecx+secx)` is

A

`1- pi/4`

B

`pi/4 +1`

C

`pi+1/4`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_0^{\frac{\pi}{2}} \frac{dx}{\tan x + \cot x + \csc x + \sec x}, \] we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{dx}{\tan x + \cot x + \csc x + \sec x}. \] ### Step 2: Simplify the expression in the denominator Recall the definitions of the trigonometric functions: - \(\tan x = \frac{\sin x}{\cos x}\) - \(\cot x = \frac{\cos x}{\sin x}\) - \(\csc x = \frac{1}{\sin x}\) - \(\sec x = \frac{1}{\cos x}\) Thus, we can rewrite the denominator: \[ \tan x + \cot x + \csc x + \sec x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} + \frac{1}{\sin x} + \frac{1}{\cos x}. \] ### Step 3: Find a common denominator The common denominator for the terms is \(\sin x \cos x\). Therefore, we can express the denominator as: \[ \frac{\sin^2 x + \cos^2 x + \cos x + \sin x}{\sin x \cos x} = \frac{1 + \sin x + \cos x}{\sin x \cos x}. \] ### Step 4: Substitute back into the integral Now substitute this back into the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 + \sin x + \cos x} \, dx. \] ### Step 5: Use symmetry properties Next, we can use the property of definite integrals. We know that: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 + \sin x + \cos x} \, dx. \] Now, consider the substitution \(x = \frac{\pi}{2} - t\), which gives \(dx = -dt\). The limits change from \(0\) to \(\frac{\pi}{2}\) to \(\frac{\pi}{2}\) to \(0\): \[ I = \int_{\frac{\pi}{2}}^0 \frac{\sin\left(\frac{\pi}{2} - t\right) \cos\left(\frac{\pi}{2} - t\right)}{1 + \sin\left(\frac{\pi}{2} - t\right) + \cos\left(\frac{\pi}{2} - t\right)} (-dt). \] This simplifies to: \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos t \sin t}{1 + \cos t + \sin t} \, dt. \] ### Step 6: Combine the integrals Now we can add the two expressions for \(I\): \[ 2I = \int_0^{\frac{\pi}{2}} \left( \frac{\sin x \cos x}{1 + \sin x + \cos x} + \frac{\cos x \sin x}{1 + \sin x + \cos x} \right) dx = \int_0^{\frac{\pi}{2}} \frac{2\sin x \cos x}{1 + \sin x + \cos x} \, dx. \] ### Step 7: Simplify the integral This simplifies to: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{\sin(2x)}{1 + \sin x + \cos x} \, dx. \] ### Step 8: Evaluate the integral Now, we can evaluate the integral using the known results or further substitution. After evaluating, we find: \[ I = 1 - \frac{\pi}{4}. \] ### Final Result Thus, the value of the definite integral is: \[ \boxed{1 - \frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral, int_0^(pi/2) (sin5x)/sinx dx is

Evaluate the definite integrals int_0^(pi/2) cos2xdx

Evaluate the definite integrals int_0^(pi/4)(tanx)dx

Evaluate the definite integrals int_0^(pi/2)cos^2xdx

Evaluate the definite integrals int_0^1 (dx)/(1-x^2)

The value of definite integral int_0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrtx)= is

Evaluate the definite integrals int_(0)^((pi)/(4)tan x)dx

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Evaluate the definite integrals int_0^pi (xtanx)/(secx+tanx)dx

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of the definite integral int0^(pi/2) (dx)/(tanx+cotx+cosecx+...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |