Home
Class 12
MATHS
The value of the integral underset(e^(-1...

The value of the integral `underset(e^(-1))overset(e^(2))int |(log_(e)x)/(x)|dx` is

A

`3/2`

B

`5/2`

C

`3/2`

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{e^{-1}}^{e^{2}} \left| \frac{\log_e x}{x} \right| dx, \] we first need to analyze the function \(\frac{\log_e x}{x}\) to determine where it is positive and negative. ### Step 1: Identify the turning point The function \(\frac{\log_e x}{x}\) changes its sign at \(x = 1\) because \(\log_e 1 = 0\). Therefore, we will split the integral at this point. ### Step 2: Split the integral We can write the integral as: \[ \int_{e^{-1}}^{e^{2}} \left| \frac{\log_e x}{x} \right| dx = \int_{e^{-1}}^{1} -\frac{\log_e x}{x} dx + \int_{1}^{e^{2}} \frac{\log_e x}{x} dx. \] ### Step 3: Evaluate the first integral For the first integral, we have: \[ \int_{e^{-1}}^{1} -\frac{\log_e x}{x} dx. \] Let \(t = \log_e x\), then \(dt = \frac{1}{x} dx\) or \(dx = x dt = e^t dt\). The limits change as follows: - When \(x = e^{-1}\), \(t = -1\). - When \(x = 1\), \(t = 0\). Thus, the integral becomes: \[ -\int_{-1}^{0} t \, dt = -\left[ \frac{t^2}{2} \right]_{-1}^{0} = -\left(0 - \frac{(-1)^2}{2}\right) = -\left(-\frac{1}{2}\right) = \frac{1}{2}. \] ### Step 4: Evaluate the second integral For the second integral, we have: \[ \int_{1}^{e^{2}} \frac{\log_e x}{x} dx. \] Using the same substitution \(t = \log_e x\), the limits change as follows: - When \(x = 1\), \(t = 0\). - When \(x = e^{2}\), \(t = 2\). Thus, the integral becomes: \[ \int_{0}^{2} t \, dt = \left[ \frac{t^2}{2} \right]_{0}^{2} = \frac{2^2}{2} - 0 = \frac{4}{2} = 2. \] ### Step 5: Combine the results Now, we combine the results of both integrals: \[ \int_{e^{-1}}^{e^{2}} \left| \frac{\log_e x}{x} \right| dx = \frac{1}{2} + 2 = \frac{1}{2} + \frac{4}{2} = \frac{5}{2}. \] Thus, the value of the integral is \[ \frac{5}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of the integral overset(e )underset(1//e)int |logx|dx , is

The value of integral underset(2)overset(4)int(dx)/(x) is :-

int((log _(e)x)^(3))/(x)dx

The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^(2))dx , is

int (1+log_e x)/x dx

The value of the integral overset(2)underset(0)int (log(x^(2)+2))/((x+2)^(2)) , dx is

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The integral underset(1)overset(5)int x^(2)dx is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |