Home
Class 12
MATHS
The value of lim ( x to (pi)/(4))(int(2 ...

The value of `lim _( x to (pi)/(4))(int_(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ^(2)-(pi^(2))/(16))` is:

A

`(2)/(pi) g (2)`

B

`-(4)/(pi) g (2)`

C

`-(16)/(pi) g (2)`

D

`-(16)/(pi) g (2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \frac{\pi}{4}} \frac{\int_{2}^{\csc^2 x} t g(t) dt}{x^2 - \frac{\pi^2}{16}}, \] we start by evaluating the limit as \( x \) approaches \( \frac{\pi}{4} \). ### Step 1: Evaluate the denominator First, we calculate the denominator: \[ x^2 - \frac{\pi^2}{16}. \] Substituting \( x = \frac{\pi}{4} \): \[ \left( \frac{\pi}{4} \right)^2 - \frac{\pi^2}{16} = \frac{\pi^2}{16} - \frac{\pi^2}{16} = 0. \] ### Step 2: Evaluate the numerator Next, we evaluate the numerator: \[ \int_{2}^{\csc^2\left(\frac{\pi}{4}\right)} t g(t) dt. \] Since \( \csc\left(\frac{\pi}{4}\right) = \sqrt{2} \), we have: \[ \int_{2}^{\csc^2\left(\frac{\pi}{4}\right)} t g(t) dt = \int_{2}^{2} t g(t) dt = 0. \] ### Step 3: Determine the indeterminate form Now, we have both the numerator and denominator approaching 0, giving us the indeterminate form \( \frac{0}{0} \). To resolve this, we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and denominator separately. #### Differentiate the numerator Using Leibniz's rule for differentiation under the integral sign: \[ \frac{d}{dx} \int_{2}^{\csc^2 x} t g(t) dt = g(\csc^2 x) \cdot \frac{d}{dx}(\csc^2 x). \] The derivative of \( \csc^2 x \) is: \[ \frac{d}{dx}(\csc^2 x) = -2 \csc^2 x \cot x. \] Thus, the derivative of the numerator becomes: \[ g(\csc^2 x) \cdot (-2 \csc^2 x \cot x). \] #### Differentiate the denominator The derivative of the denominator \( x^2 - \frac{\pi^2}{16} \) is: \[ \frac{d}{dx}(x^2 - \frac{\pi^2}{16}) = 2x. \] ### Step 5: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to \frac{\pi}{4}} \frac{-2 g(\csc^2 x) \csc^2 x \cot x}{2x}. \] ### Step 6: Simplify the limit We can cancel the 2's: \[ \lim_{x \to \frac{\pi}{4}} \frac{-g(\csc^2 x) \csc^2 x \cot x}{x}. \] ### Step 7: Substitute \( x = \frac{\pi}{4} \) Now substituting \( x = \frac{\pi}{4} \): \[ \csc^2\left(\frac{\pi}{4}\right) = 2, \quad \cot\left(\frac{\pi}{4}\right) = 1. \] Thus, we have: \[ \lim_{x \to \frac{\pi}{4}} \frac{-g(2) \cdot 2 \cdot 1}{\frac{\pi}{4}} = \frac{-8 g(2)}{\pi}. \] ### Final Result Therefore, the value of the limit is: \[ -\frac{8 g(2)}{\pi}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr(pi)/(4)) (int_(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/(16)) is equal to

Evaluate, lim_(xto(pi//6)) (cot^(2)x-3)/("cosec"x-2)

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

int_(pi/3)^(pi/2) cosec x dx=?

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

Evaluate : Lim_(x to 0)int_(0)^(x^(2)){(sinsqrt(t)) (tansqrt(t))dt}/(x^(4))

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of lim ( x to (pi)/(4))(int(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |