Home
Class 12
MATHS
int0^(n+1) min {(|x-1|,|x-2|,|x-3|,........

`int_0^(n+1) min {(|x-1|,|x-2|,|x-3|,............,|x-n|) }dx` equais to (where n be a positive integer)

A

`((n +1))/(4 )`

B

`((n +2))/(4)`

C

`((n +3))/(4)`

D

`((n +4))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{n+1} \min \{ |x-1|, |x-2|, |x-3|, \ldots, |x-n| \} \, dx \), we will analyze the function inside the integral step by step. ### Step 1: Understand the function \( \min \{ |x-1|, |x-2|, |x-3|, \ldots, |x-n| \} \) The function \( |x-k| \) represents the distance from \( x \) to \( k \). The minimum of these absolute values will change at the points \( x = 1, 2, 3, \ldots, n \). ### Step 2: Identify intervals We need to analyze the behavior of the function in the intervals: - \( [0, 1] \) - \( [1, 2] \) - \( [2, 3] \) - \( [3, 4] \) - \( \ldots \) - \( [n, n+1] \) ### Step 3: Calculate the minimum in each interval 1. **Interval \( [0, 1] \)**: - Here, \( |x-k| \) for \( k = 1, 2, \ldots, n \) gives: - \( |x-1| = 1-x \) - \( |x-2| = 2-x \) - \( |x-3| = 3-x \) - ... - \( |x-n| = n-x \) - The minimum is \( |x-1| = 1-x \) since \( x \) is closer to 1. 2. **Interval \( [1, 2] \)**: - The minimum is \( |x-1| \) for \( x \in [1, 2] \) since \( x \) is closer to 1 than to any other point. 3. **Interval \( [2, 3] \)**: - The minimum is \( |x-2| \) for \( x \in [2, 3] \). 4. **Interval \( [3, 4] \)**: - The minimum is \( |x-3| \) for \( x \in [3, 4] \). 5. **Continue this pattern until \( [n, n+1] \)**: - The minimum is \( |x-n| \) for \( x \in [n, n+1] \). ### Step 4: Set up the integral Now we can express the integral as a sum of integrals over each interval: \[ I = \int_0^1 (1-x) \, dx + \int_1^2 (x-1) \, dx + \int_2^3 (2-x) \, dx + \int_3^4 (x-3) \, dx + \ldots + \int_n^{n+1} (x-n) \, dx \] ### Step 5: Calculate each integral 1. **For \( \int_0^1 (1-x) \, dx \)**: \[ = \left[ x - \frac{x^2}{2} \right]_0^1 = 1 - \frac{1}{2} = \frac{1}{2} \] 2. **For \( \int_1^2 (x-1) \, dx \)**: \[ = \left[ \frac{x^2}{2} - x \right]_1^2 = \left( \frac{4}{2} - 2 \right) - \left( \frac{1}{2} - 1 \right) = 2 - 2 + \frac{1}{2} = \frac{1}{2} \] 3. **For \( \int_2^3 (2-x) \, dx \)**: \[ = \left[ 2x - \frac{x^2}{2} \right]_2^3 = \left( 6 - \frac{9}{2} \right) - \left( 4 - 2 \right) = 6 - 4.5 - 2 = -0.5 \text{ (but we take absolute value)} \] Continuing this way, we find that each integral contributes \( \frac{1}{2} \) until the last one. ### Step 6: Sum the contributions Since there are \( n \) intervals, and each contributes \( \frac{1}{2} \): \[ I = \frac{1}{2} + \frac{1}{2} + \ldots + \frac{1}{2} \text{ (n times)} = \frac{n+1}{2} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{(n+1)}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The equatin 2x = (2n +1)pi (1 - cos x) , (where n is a positive integer)

Is {x:x^(3) +1 =0,x in N}=phi true where N is the set of positive integers ?

The integral int_(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (where [.] represents the greatest integer function)

If two consecutive terms in the expansion of (x+a)^n are equal to where n is a positive integer then ((n+1)a)/(x+a) is

The number non-negative integral solutions of x_(1)+x_(2)+x_(3)+x_(4) le n (where n is a positive integer) is:

Prove that the function f(x)=x^n is continuous at x = n , where n is a positive integer.

Evaluate int_(0)^(1)(tx+1-x)^(n)dx , where n is a positive integer and t is a parameter independent of x . Hence , show that ∫ 0 1 ​ x k (1−x) n−k dx= [ n C k ​ (n+1)] P ​ fork=0,1,......n, then P=

If n is a positive odd integer, then int |x^n| dx=

Prove that (^n C_0)/x-(^n C_0)/(x+1)+(^n C_1)/(x+2)-+(-1)^n(^n C_n)/(x+n)=(n !)/(x(x+1)(x-n)), where n is any positive integer and x is not a negative integer.

The number of non-negative integral solution x_1 + x_2 + x_3 + x_4 <=n (where n is a positive integer) is :

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int0^(n+1) min {(|x-1|,|x-2|,|x-3|,............,|x-n|) }dx equais to (...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |