Home
Class 12
MATHS
If f (x) =int (0)^(g(x))(dt)/(sqrt(1+t ^...

If `f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, ` then the value of `f'((pi)/(2))` is equal to:

A

1

B

`-1`

C

0

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f'(\frac{\pi}{2}) \) given the functions \( f(x) \) and \( g(x) \). ### Step-by-Step Solution: 1. **Define the Functions**: \[ f(x) = \int_{0}^{g(x)} \frac{dt}{\sqrt{1 + t^3}} \] \[ g(x) = \int_{0}^{\cos x} (1 + \sin t)^2 \, dt \] 2. **Differentiate \( f(x) \)**: Using Leibniz's rule for differentiation under the integral sign, we have: \[ f'(x) = \frac{1}{\sqrt{1 + (g(x))^3}} \cdot g'(x) \] Here, \( h(x) = 0 \) contributes nothing to the derivative. 3. **Calculate \( g'(x) \)**: Again, applying Leibniz's rule: \[ g'(x) = (1 + \sin(\cos x))^2 \cdot \frac{d}{dx}(\cos x) = (1 + \sin(\cos x))^2 \cdot (-\sin x) \] 4. **Evaluate \( g'(\frac{\pi}{2}) \)**: \[ g'(\frac{\pi}{2}) = (1 + \sin(\cos(\frac{\pi}{2})))^2 \cdot (-\sin(\frac{\pi}{2})) \] Since \( \cos(\frac{\pi}{2}) = 0 \): \[ g'(\frac{\pi}{2}) = (1 + \sin(0))^2 \cdot (-1) = 1^2 \cdot (-1) = -1 \] 5. **Calculate \( g(\frac{\pi}{2}) \)**: \[ g(\frac{\pi}{2}) = \int_{0}^{\cos(\frac{\pi}{2})} (1 + \sin t)^2 \, dt = \int_{0}^{0} (1 + \sin t)^2 \, dt = 0 \] 6. **Substitute Values into \( f'(\frac{\pi}{2}) \)**: Now we substitute \( g(\frac{\pi}{2}) \) and \( g'(\frac{\pi}{2}) \) into the expression for \( f'(\frac{\pi}{2}) \): \[ f'(\frac{\pi}{2}) = \frac{1}{\sqrt{1 + (0)^3}} \cdot (-1) = \frac{1}{\sqrt{1}} \cdot (-1) = -1 \] ### Final Answer: Thus, the value of \( f'(\frac{\pi}{2}) \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

Given a function 'g' continous everywhere such that int _(0) ^(1) g (t ) dt =2 and g (1)=5. If f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt, then the vlaue of f''(1)-f'(1) is:

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) =int (0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int (0)^(cos x )...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |