Home
Class 12
MATHS
Let f (x) =(1)/(x ^(2)) int (4)^(x) (4t ...

Let `f (x) =(1)/(x ^(2)) int _(4)^(x) (4t ^(2) -2 f '(t) dt, ` find `9f'(4)`

A

16

B

4

C

8

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( 9f'(4) \) given that \[ f(x) = \frac{1}{x^2} \int_{4}^{x} (4t^2 - 2f'(t)) \, dt. \] ### Step 1: Differentiate \( f(x) \) We start by differentiating both sides with respect to \( x \). We will use the product rule and the Fundamental Theorem of Calculus. \[ f'(x) = \frac{d}{dx} \left( \frac{1}{x^2} \right) \int_{4}^{x} (4t^2 - 2f'(t)) \, dt + \frac{1}{x^2} \cdot (4x^2 - 2f'(x)). \] ### Step 2: Apply the Product Rule The derivative of \( \frac{1}{x^2} \) is \( -\frac{2}{x^3} \). Thus, we can write: \[ f'(x) = -\frac{2}{x^3} \int_{4}^{x} (4t^2 - 2f'(t)) \, dt + \frac{1}{x^2} (4x^2 - 2f'(x)). \] ### Step 3: Simplify the Expression Now, we can simplify the expression: \[ f'(x) = -\frac{2}{x^3} \int_{4}^{x} (4t^2 - 2f'(t)) \, dt + \frac{4}{x^2} - \frac{2f'(x)}{x^2}. \] ### Step 4: Rearranging the Equation Rearranging gives us: \[ f'(x) + \frac{2f'(x)}{x^2} = \frac{4}{x^2} - \frac{2}{x^3} \int_{4}^{x} (4t^2 - 2f'(t)) \, dt. \] Factoring out \( f'(x) \): \[ f'(x) \left( 1 + \frac{2}{x^2} \right) = \frac{4}{x^2} - \frac{2}{x^3} \int_{4}^{x} (4t^2 - 2f'(t)) \, dt. \] ### Step 5: Solve for \( f'(x) \) Now we can solve for \( f'(x) \): \[ f'(x) = \frac{\frac{4}{x^2} - \frac{2}{x^3} \int_{4}^{x} (4t^2 - 2f'(t)) \, dt}{1 + \frac{2}{x^2}}. \] ### Step 6: Substitute \( x = 4 \) Next, we substitute \( x = 4 \) to find \( f'(4) \): \[ f'(4) = \frac{\frac{4}{4^2} - \frac{2}{4^3} \int_{4}^{4} (4t^2 - 2f'(t)) \, dt}{1 + \frac{2}{4^2}}. \] Since the integral from 4 to 4 is zero, we have: \[ f'(4) = \frac{\frac{4}{16}}{1 + \frac{2}{16}} = \frac{\frac{1}{4}}{1 + \frac{1}{8}} = \frac{\frac{1}{4}}{\frac{9}{8}} = \frac{1}{4} \cdot \frac{8}{9} = \frac{2}{9}. \] ### Step 7: Calculate \( 9f'(4) \) Finally, we calculate \( 9f'(4) \): \[ 9f'(4) = 9 \cdot \frac{2}{9} = 2. \] ### Final Answer Thus, the answer is: \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=1/x^2 int_4^x (4t^2-2f'(t))dt then find 9f'(4)

Given a function g, continous everywhere such that g (1)=5 and int _(0)^(1) g (t) dt =2. If f (x) =1/2 int _(0) ^(x) (x -t)^(2) g (t) dt, then find the value of f '(1)+f''(1).

If F(x) =(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(4) equals

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

Let f(x) = int_(-2)^(x)|t + 1|dt , then

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f (x) =(1)/(x ^(2)) int (4)^(x) (4t ^(2) -2 f '(t) dt, find 9f'(4...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |