Home
Class 12
MATHS
The value of int(0) ^(2pi) cos ^(-1) ((1...

The value of `int_(0) ^(2pi) cos ^(-1) ((1- tan ^(2) ""(x)/(2 ))/(1+ tan ^(2)""(x)/(2)))` dx is:

A

`pi^(2)`

B

`(pi^(2))/(2)`

C

`2pi^(2)`

D

`pi^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{2\pi} \cos^{-1} \left( \frac{1 - \tan^2 \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)} \right) dx, \] we can use the identity \[ \cos x = \frac{1 - \tan^2 \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}. \] ### Step 1: Substitute the identity Using the identity, we can rewrite the integral as: \[ I = \int_{0}^{2\pi} \cos^{-1}(\cos x) \, dx. \] ### Step 2: Simplify the integral The function \(\cos^{-1}(\cos x)\) gives us \(x\) for \(x\) in the interval \([0, \pi]\) and \(2\pi - x\) for \(x\) in the interval \([\pi, 2\pi]\). Therefore, we can break the integral into two parts: \[ I = \int_{0}^{\pi} x \, dx + \int_{\pi}^{2\pi} (2\pi - x) \, dx. \] ### Step 3: Evaluate the first integral Calculating the first integral: \[ \int_{0}^{\pi} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{\pi} = \frac{\pi^2}{2}. \] ### Step 4: Evaluate the second integral Now, calculating the second integral: \[ \int_{\pi}^{2\pi} (2\pi - x) \, dx = \int_{\pi}^{2\pi} 2\pi \, dx - \int_{\pi}^{2\pi} x \, dx. \] Calculating the first part: \[ \int_{\pi}^{2\pi} 2\pi \, dx = 2\pi \left[ x \right]_{\pi}^{2\pi} = 2\pi (2\pi - \pi) = 2\pi^2. \] Calculating the second part: \[ \int_{\pi}^{2\pi} x \, dx = \left[ \frac{x^2}{2} \right]_{\pi}^{2\pi} = \frac{(2\pi)^2}{2} - \frac{\pi^2}{2} = \frac{4\pi^2}{2} - \frac{\pi^2}{2} = \frac{3\pi^2}{2}. \] ### Step 5: Combine the results Now we can combine the results of the two integrals: \[ I = \frac{\pi^2}{2} + \left( 2\pi^2 - \frac{3\pi^2}{2} \right) = \frac{\pi^2}{2} + 2\pi^2 - \frac{3\pi^2}{2} = \frac{\pi^2}{2} + \frac{4\pi^2}{2} - \frac{3\pi^2}{2} = \frac{2\pi^2}{2} = \pi^2. \] ### Final Answer Thus, the value of the integral is: \[ I = 2\pi^2. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

Find the value of int_(0)^(2pi)1/(1+tan^(4)x)dx

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(2)))dx is

The value of int_(-pi//2)^(pi//2) ( x^(5)+ x sin^(2)x +2 tan^(-1)x ) dx is

The value of int_0^(pi/2) (dx)/(1+tan^3 x) is (a) 0 (b) 1 (c) pi/2 (d) pi

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is____.

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of int(0) ^(2pi) cos ^(-1) ((1- tan ^(2) ""(x)/(2 ))/(1+ tan...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |