Home
Class 12
MATHS
Given a function 'g' continous everywher...

Given a function 'g' continous everywhere such that `int _(0) ^(1) g (t ) dt =2 and g (1)=5.` If `f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt,` then the vlaue of `f''(1)-f'(1)` is:

A

0

B

1

C

2

D

10/7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f''(1) - f'(1) \) given the function: \[ f(x) = \frac{1}{2} \int_0^x (x - t)^2 g(t) dt \] where \( g(t) \) is continuous everywhere, \( \int_0^1 g(t) dt = 2 \), and \( g(1) = 5 \). ### Step 1: Determine the form of \( g(t) \) Since we know that \( g(1) = 5 \) and \( \int_0^1 g(t) dt = 2 \), we can assume a simple polynomial form for \( g(t) \). Let's assume: \[ g(t) = a t^b \] From \( g(1) = 5 \), we have: \[ g(1) = a \cdot 1^b = a = 5 \] Thus, \( g(t) = 5 t^b \). ### Step 2: Use the integral condition Now, we use the condition \( \int_0^1 g(t) dt = 2 \): \[ \int_0^1 5 t^b dt = 2 \] Calculating the integral: \[ 5 \int_0^1 t^b dt = 5 \cdot \frac{1}{b + 1} = 2 \] This gives us: \[ \frac{5}{b + 1} = 2 \implies 5 = 2(b + 1) \implies 5 = 2b + 2 \implies 2b = 3 \implies b = \frac{3}{2} \] Thus, we have: \[ g(t) = 5 t^{3/2} \] ### Step 3: Substitute \( g(t) \) into \( f(x) \) Now substituting \( g(t) \) into \( f(x) \): \[ f(x) = \frac{1}{2} \int_0^x (x - t)^2 (5 t^{3/2}) dt = \frac{5}{2} \int_0^x (x - t)^2 t^{3/2} dt \] ### Step 4: Evaluate the integral Using the binomial expansion: \[ (x - t)^2 = x^2 - 2xt + t^2 \] We can split the integral: \[ f(x) = \frac{5}{2} \left( \int_0^x (x^2 t^{3/2}) dt - 2x \int_0^x (t^{5/2}) dt + \int_0^x (t^{7/2}) dt \right) \] Calculating each integral: 1. \( \int_0^x t^{3/2} dt = \frac{2}{5} x^{5/2} \) 2. \( \int_0^x t^{5/2} dt = \frac{2}{7} x^{7/2} \) 3. \( \int_0^x t^{7/2} dt = \frac{2}{9} x^{9/2} \) Substituting these back: \[ f(x) = \frac{5}{2} \left( x^2 \cdot \frac{2}{5} x^{5/2} - 2x \cdot \frac{2}{7} x^{7/2} + \frac{2}{9} x^{9/2} \right) \] Simplifying: \[ = \frac{5}{2} \left( \frac{2}{5} x^{9/2} - \frac{4}{7} x^{9/2} + \frac{2}{9} x^{9/2} \right) \] Combining the terms: \[ = \frac{5}{2} x^{9/2} \left( \frac{2}{5} - \frac{4}{7} + \frac{2}{9} \right) \] ### Step 5: Find \( f'(x) \) and \( f''(x) \) Now, we differentiate \( f(x) \): \[ f'(x) = \frac{5}{2} \cdot \frac{9}{2} x^{7/2} \left( \frac{2}{5} - \frac{4}{7} + \frac{2}{9} \right) \] And differentiate again to find \( f''(x) \): \[ f''(x) = \frac{5}{2} \cdot \frac{9}{2} \cdot \frac{7}{2} x^{5/2} \left( \frac{2}{5} - \frac{4}{7} + \frac{2}{9} \right) \] ### Step 6: Evaluate at \( x = 1 \) Finally, we evaluate \( f'(1) \) and \( f''(1) \): 1. Calculate \( f'(1) \) 2. Calculate \( f''(1) \) Then compute: \[ f''(1) - f'(1) \] ### Final Calculation After evaluating, we find: \[ f''(1) - f'(1) = \frac{10}{7} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Given a function g, continous everywhere such that g (1)=5 and int _(0)^(1) g (t) dt =2. If f (x) =1/2 int _(0) ^(x) (x -t)^(2) g (t) dt, then find the value of f '(1)+f''(1).

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Given a function 'g' continous everywhere such that int (0) ^(1) g (t ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |