Home
Class 12
MATHS
int (0)^(1) (tan ^(-1)x)/(x ) dx =...

`int _(0)^(1) (tan ^(-1)x)/(x ) dx =`

A

`int _(0)^(pi//4) (sin x)/(x )dx `

B

`int _(0)^(pi//2) (x)/(sin x )dx `

C

`1/2 int _(0)^(pi//2) (x)/(sin x) dx`

D

`1/2 int _(0)^(pi//2) (x )/(sin x ) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \frac{\tan^{-1} x}{x} \, dx \), we can follow these steps: ### Step 1: Set up the integral Let \[ I = \int_0^1 \frac{\tan^{-1} x}{x} \, dx \] ### Step 2: Use substitution We will use the substitution \( x = \tan \theta \). Then, we differentiate both sides: \[ dx = \sec^2 \theta \, d\theta \] ### Step 3: Change the limits of integration When \( x = 0 \): \[ \tan \theta = 0 \implies \theta = 0 \] When \( x = 1 \): \[ \tan \theta = 1 \implies \theta = \frac{\pi}{4} \] Thus, the limits change from \( x: 0 \to 1 \) to \( \theta: 0 \to \frac{\pi}{4} \). ### Step 4: Rewrite the integral Substituting \( x = \tan \theta \) into the integral gives: \[ I = \int_0^{\frac{\pi}{4}} \frac{\tan^{-1}(\tan \theta)}{\tan \theta} \cdot \sec^2 \theta \, d\theta \] Since \( \tan^{-1}(\tan \theta) = \theta \) for \( \theta \) in the range \( [0, \frac{\pi}{4}] \), we have: \[ I = \int_0^{\frac{\pi}{4}} \frac{\theta}{\tan \theta} \cdot \sec^2 \theta \, d\theta \] ### Step 5: Simplify the integrand Recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) and \( \sec^2 \theta = \frac{1}{\cos^2 \theta} \): \[ I = \int_0^{\frac{\pi}{4}} \theta \cdot \frac{\sec^2 \theta}{\tan \theta} \, d\theta = \int_0^{\frac{\pi}{4}} \theta \cdot \frac{1}{\sin \theta \cos \theta} \, d\theta \] ### Step 6: Use a trigonometric identity We can use the identity \( \sin(2\theta) = 2 \sin \theta \cos \theta \): \[ I = \int_0^{\frac{\pi}{4}} \frac{2\theta}{\sin(2\theta)} \, d\theta \] ### Step 7: Change of variable Let \( t = 2\theta \), then \( d\theta = \frac{dt}{2} \). The limits change as follows: When \( \theta = 0 \), \( t = 0 \); when \( \theta = \frac{\pi}{4} \), \( t = \frac{\pi}{2} \): \[ I = \int_0^{\frac{\pi}{2}} \frac{t}{\sin t} \cdot \frac{1}{2} \, dt = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{t}{\sin t} \, dt \] ### Step 8: Recognize the integral The integral \( \int_0^{\frac{\pi}{2}} \frac{t}{\sin t} \, dt \) is a known integral and evaluates to \( \frac{\pi^2}{4} \): \[ I = \frac{1}{2} \cdot \frac{\pi^2}{4} = \frac{\pi^2}{8} \] ### Final Answer Thus, the value of the integral is: \[ \int_0^1 \frac{\tan^{-1} x}{x} \, dx = \frac{\pi^2}{8} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^2)dx

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx

int (tan^(-1)x)dx

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

Solve: int_(-1)^(1)x tan^(-1)x dx

2) int_(0)^(1)tan^(-1)(1-x+x^(2))dx

int 1/((1+x^2)tan^(-1)x)dx

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

Evaluate : int_(0)^(1)((tan^(-1)x)^(2))/(1+x^(2))dx

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int (0)^(1) (tan ^(-1)x)/(x ) dx =

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |