Home
Class 12
MATHS
The value of int (0)^(4//pi) (3x ^(2) si...

The value of `int _(0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) dx` is:

A

`(8 sqrt2)/(pi ^(3))`

B

`(24sqrt2)/(pi ^(3))`

C

`(32sqrt2)/(pi ^(3))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{4}{\pi}} \left( 3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right) \right) dx, \] we can break it down into two parts: \[ I = \int_{0}^{\frac{4}{\pi}} 3x^2 \sin\left(\frac{1}{x}\right) dx - \int_{0}^{\frac{4}{\pi}} x \cos\left(\frac{1}{x}\right) dx. \] Let's denote the first integral as \( I_1 \) and the second integral as \( I_2 \). ### Step 1: Solve \( I_1 = \int_{0}^{\frac{4}{\pi}} 3x^2 \sin\left(\frac{1}{x}\right) dx \) We will use integration by parts for \( I_1 \). Let: - \( u = \sin\left(\frac{1}{x}\right) \) (first function) - \( dv = 3x^2 dx \) (second function) Then, we differentiate and integrate: - \( du = \cos\left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right) dx = -\frac{\cos\left(\frac{1}{x}\right)}{x^2} dx \) - \( v = x^3 \) Using integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I_1 = \left[ x^3 \sin\left(\frac{1}{x}\right) \right]_{0}^{\frac{4}{\pi}} - \int_{0}^{\frac{4}{\pi}} x^3 \left(-\frac{\cos\left(\frac{1}{x}\right)}{x^2}\right) dx \] This simplifies to: \[ I_1 = \left[ x^3 \sin\left(\frac{1}{x}\right) \right]_{0}^{\frac{4}{\pi}} + \int_{0}^{\frac{4}{\pi}} x \cos\left(\frac{1}{x}\right) dx \] ### Step 2: Evaluate the boundary term Now we need to evaluate \( \left[ x^3 \sin\left(\frac{1}{x}\right) \right]_{0}^{\frac{4}{\pi}} \): 1. At \( x = \frac{4}{\pi} \): \[ \left( \frac{4}{\pi} \right)^3 \sin\left(\frac{\pi}{4}\right) = \frac{64}{\pi^3} \cdot \frac{1}{\sqrt{2}} = \frac{64}{\sqrt{2} \pi^3} \] 2. At \( x = 0 \): As \( x \to 0 \), \( x^3 \sin\left(\frac{1}{x}\right) \) oscillates between \( -x^3 \) and \( x^3 \), thus the limit approaches \( 0 \). So, \[ \left[ x^3 \sin\left(\frac{1}{x}\right) \right]_{0}^{\frac{4}{\pi}} = \frac{64}{\sqrt{2} \pi^3} - 0 = \frac{64}{\sqrt{2} \pi^3} \] ### Step 3: Substitute back into \( I \) Now substituting back into \( I \): \[ I = \frac{64}{\sqrt{2} \pi^3} + I_2 \] Since \( I_2 = \int_{0}^{\frac{4}{\pi}} x \cos\left(\frac{1}{x}\right) dx \), we notice that this term cancels out with the corresponding term in \( I \). ### Step 4: Final Calculation Thus, we have: \[ I = \frac{64}{\sqrt{2} \pi^3} \] To rationalize: \[ I = \frac{64 \sqrt{2}}{2 \pi^3} = \frac{32 \sqrt{2}}{\pi^3} \] ### Final Answer The final value of the integral is: \[ \frac{32 \sqrt{2}}{\pi^3} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

The value of int_(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx , is

Evaluate int _(0)^(pi)(x)/(1+ cos^(2)x)dx .

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

int_(0)^(pi) x sin x cos^(2)x\ dx

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of int (0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |