Home
Class 12
MATHS
Number of values of x satisfying the equ...

Number of values of `x` satisfying the equation `int_(-1)^x (8t^2+28/3t+4) \ dt=((3/2)x+1)/(log_(x+1)sqrt(x+1)),` is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_{-1}^{x} (8t^2 + \frac{28}{3}t + 4) \, dt = \frac{\frac{3}{2}x + 1}{\log_{(x+1)}\sqrt{x+1}}, \] we will follow these steps: ### Step 1: Evaluate the Left-Hand Side (LHS) We need to compute the integral on the left-hand side: \[ \int (8t^2 + \frac{28}{3}t + 4) \, dt. \] Calculating the integral: \[ \int (8t^2) \, dt = \frac{8}{3}t^3, \] \[ \int \left(\frac{28}{3}t\right) \, dt = \frac{28}{6}t^2 = \frac{14}{3}t^2, \] \[ \int 4 \, dt = 4t. \] Thus, the indefinite integral is: \[ \frac{8}{3}t^3 + \frac{14}{3}t^2 + 4t + C. \] Now, we evaluate the definite integral from \(-1\) to \(x\): \[ \int_{-1}^{x} (8t^2 + \frac{28}{3}t + 4) \, dt = \left[\frac{8}{3}x^3 + \frac{14}{3}x^2 + 4x\right] - \left[\frac{8}{3}(-1)^3 + \frac{14}{3}(-1)^2 + 4(-1)\right]. \] Calculating the value at \(t = -1\): \[ \frac{8}{3}(-1)^3 + \frac{14}{3}(-1)^2 + 4(-1) = \frac{-8}{3} + \frac{14}{3} - 4 = \frac{-8 + 14 - 12}{3} = \frac{-6}{3} = -2. \] Thus, the LHS becomes: \[ \frac{8}{3}x^3 + \frac{14}{3}x^2 + 4x + 2. \] ### Step 2: Simplify the Right-Hand Side (RHS) The right-hand side is: \[ \frac{\frac{3}{2}x + 1}{\log_{(x+1)}\sqrt{x+1}}. \] Using the property of logarithms, we can rewrite \(\log_{(x+1)}\sqrt{x+1}\) as: \[ \log_{(x+1)}(x+1)^{1/2} = \frac{1}{2}\log_{(x+1)}(x+1) = \frac{1}{2}. \] Thus, the RHS simplifies to: \[ \frac{\frac{3}{2}x + 1}{\frac{1}{2}} = 3x + 2. \] ### Step 3: Set the LHS equal to the RHS Now we have the equation: \[ \frac{8}{3}x^3 + \frac{14}{3}x^2 + 4x + 2 = 3x + 2. \] Subtract \(3x + 2\) from both sides: \[ \frac{8}{3}x^3 + \frac{14}{3}x^2 + 4x + 2 - 3x - 2 = 0. \] This simplifies to: \[ \frac{8}{3}x^3 + \frac{14}{3}x^2 + (4 - 3)x = 0, \] or \[ \frac{8}{3}x^3 + \frac{14}{3}x^2 + x = 0. \] ### Step 4: Factor the equation Factoring out \(x\): \[ x\left(\frac{8}{3}x^2 + \frac{14}{3}x + 1\right) = 0. \] This gives us one solution: \[ x = 0. \] Now we need to find the roots of the quadratic: \[ \frac{8}{3}x^2 + \frac{14}{3}x + 1 = 0. \] ### Step 5: Use the quadratic formula Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = \frac{8}{3}\), \(b = \frac{14}{3}\), and \(c = 1\): \[ b^2 - 4ac = \left(\frac{14}{3}\right)^2 - 4 \cdot \frac{8}{3} \cdot 1 = \frac{196}{9} - \frac{32}{3} = \frac{196}{9} - \frac{96}{9} = \frac{100}{9}. \] Now substituting back into the formula: \[ x = \frac{-\frac{14}{3} \pm \sqrt{\frac{100}{9}}}{2 \cdot \frac{8}{3}} = \frac{-\frac{14}{3} \pm \frac{10}{3}}{\frac{16}{3}} = \frac{-14 \pm 10}{16}. \] Calculating the two possible values: 1. \(x = \frac{-4}{16} = -\frac{1}{4}\) 2. \(x = \frac{-24}{16} = -\frac{3}{2}\) ### Step 6: Check the validity of solutions We have three potential solutions: \(x = 0\), \(x = -\frac{1}{4}\), and \(x = -\frac{3}{2}\). However, we need to ensure that \(x + 1 > 0\) for the logarithm to be defined. Thus, \(x > -1\). Only \(x = 0\) and \(x = -\frac{1}{4}\) satisfy this condition. ### Conclusion The number of values of \(x\) satisfying the original equation is **2**. ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of x gt 1 satisfying the equation int_(1)^(x) tlnt dt=(1)/(4) is

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

Find the number of values of x satisfying int_(0)^(x)t^(2)sin (x-t)dt=x^(2) in [0, 100] .

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Number of integers satisfying the inequality log_((x + 3)/(x - 3))4 lt 2 [log_(1/2)(x - 3)-log_(sqrt(2)/2)sqrt(x + 3)] is greater than

The number of value(s) of x satisfying 1-log_(3)(x+1)^(2)=1/2log_(sqrt(3))((x+5)/(x+3)) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Number of values of x satisfying the equation int(-1)^x (8t^2+28/3t+4)...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |