Home
Class 12
MATHS
Consider a parabola y = (x^(2))/(4) and ...

Consider a parabola `y = (x^(2))/(4)` and the point `F (0,1).`
Let `A _(1)(x_(1), y_(1)),A _(2)(x _(2), y_(2)), A_(3)(x_(3), y_(3)),....., A_(n ) (x _(n), y _(n)) ` are 'n' points on the parabola such `x _(k) gt 0 and angle OFA_(k)= (k pi)/(2n) (k =1,2,3,......, n ).` Then the value of `lim _( n to oo) 1/n sum _(k =1) ^(n) FA_(k),` is equal to :

A

`2/pi`

B

`4/pi`

C

`8/pi`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} FA_k \] where \( F(0, 1) \) is a fixed point and \( A_k \) are points on the parabola \( y = \frac{x^2}{4} \) such that the angle \( \angle OFA_k = \frac{k \pi}{2n} \). ### Step 1: Understanding the Parabola The equation of the parabola can be rewritten as: \[ x^2 = 4y \] From this, we can identify that the parameter \( a \) in the standard form \( x^2 = 4ay \) is \( a = 1 \). ### Step 2: Finding Coordinates of Points \( A_k \) Given that the angle \( \angle OFA_k = \frac{k \pi}{2n} \), we can express the coordinates of the points \( A_k \) in terms of \( k \): Let \( \theta_k = \frac{k \pi}{2n} \). Using trigonometric relationships, we can find the coordinates of \( A_k \): \[ x_k = 2 \tan(\theta_k) \quad \text{and} \quad y_k = \frac{x_k^2}{4} = \tan^2(\theta_k) \] ### Step 3: Finding the Distance \( FA_k \) The distance \( FA_k \) from point \( F(0, 1) \) to point \( A_k(x_k, y_k) \) is given by: \[ FA_k = \sqrt{(x_k - 0)^2 + (y_k - 1)^2} = \sqrt{x_k^2 + (y_k - 1)^2} \] Substituting \( y_k = \tan^2(\theta_k) \): \[ FA_k = \sqrt{x_k^2 + (\tan^2(\theta_k) - 1)^2} \] ### Step 4: Simplifying \( FA_k \) Using the identity \( \tan^2(\theta) - 1 = \sec^2(\theta) - 2 \): \[ FA_k = \sqrt{x_k^2 + (\sec^2(\theta_k) - 2)^2} \] Substituting \( x_k = 2 \tan(\theta_k) \): \[ FA_k = \sqrt{(2 \tan(\theta_k))^2 + (\sec^2(\theta_k) - 2)^2} \] ### Step 5: Evaluating the Limit Now we need to evaluate: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} FA_k \] We can express the sum as an integral in the limit: \[ \frac{1}{n} \sum_{k=1}^{n} FA_k \approx \int_0^1 FA_k \, dr \] where \( r = \frac{k}{n} \). ### Step 6: Change of Variables Let \( t = \frac{\pi r}{4} \), then \( dr = \frac{4}{\pi} dt \) and the limits change from \( 0 \) to \( \frac{\pi}{4} \). ### Step 7: Final Integration We can now compute the integral: \[ \int_0^{\frac{\pi}{4}} \sec^2(t) \, dt = \left[ \tan(t) \right]_0^{\frac{\pi}{4}} = \tan\left(\frac{\pi}{4}\right) - \tan(0) = 1 - 0 = 1 \] ### Step 8: Putting it all together Thus, the final result is: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} FA_k = \frac{4}{\pi} \cdot 1 = \frac{4}{\pi} \] ### Conclusion The value of the limit is: \[ \frac{4}{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of \lim_{n \to \infty } sum_(k=1)^n (n-k)/(n^2) cos((4k)/n) equals to

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

For positive integers k=1,2,3,....n,, let S_k denotes the area of triangleAOB_k such that angleAOB_k=(kpi)/(2n) , OA=1 and OB_k=k The value of the lim_(n->oo)1/n^2sum_(k-1)^nS_k is

A , r = 1 , 2, 3 ….., n are n points on the parabola y^(2)=4x in the first quadrant . If A_(r) = (x_(r),y_(r)) where x_(1),x_(2),….x_(n) are in G.P and x_(1)=1,x_(2)=2 then y_(n) is equal to

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

Let S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2) ,for n=1,2,3,......., then

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Consider a parabola y = (x^(2))/(4) and the point F (0,1). Let A (1)...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |