Home
Class 12
MATHS
If I (n)=int (0)^(pi) (sin (2nx))/(sin 2...

If `I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, ` then the value of `I _( n +(1)/(2))` is equal to `(n in I)`:

A

1: `(npi)/(2()`

B

2: `pi`

C

3: `pi/2`

D

4: 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ I_n = \int_0^{\pi} \frac{\sin(2nx)}{\sin(2x)} \, dx \] and specifically find the value of \(I_{n + \frac{1}{2}}\). ### Step 1: Substitute \(n\) with \(n + \frac{1}{2}\) We start by substituting \(n\) with \(n + \frac{1}{2}\) in the integral: \[ I_{n + \frac{1}{2}} = \int_0^{\pi} \frac{\sin(2(n + \frac{1}{2})x)}{\sin(2x)} \, dx \] ### Step 2: Simplify the sine function Using the identity for sine, we can expand the sine term: \[ \sin(2(n + \frac{1}{2})x) = \sin(2nx + x) = \sin(2nx)\cos(x) + \cos(2nx)\sin(x) \] Thus, we can rewrite the integral as: \[ I_{n + \frac{1}{2}} = \int_0^{\pi} \frac{\sin(2nx)\cos(x) + \cos(2nx)\sin(x)}{\sin(2x)} \, dx \] ### Step 3: Split the integral We can split the integral into two parts: \[ I_{n + \frac{1}{2}} = \int_0^{\pi} \frac{\sin(2nx)\cos(x)}{\sin(2x)} \, dx + \int_0^{\pi} \frac{\cos(2nx)\sin(x)}{\sin(2x)} \, dx \] ### Step 4: Simplify each integral Using the identity \(\sin(2x) = 2\sin(x)\cos(x)\), we can rewrite the integrals: 1. For the first integral: \[ \int_0^{\pi} \frac{\sin(2nx)\cos(x)}{\sin(2x)} \, dx = \int_0^{\pi} \frac{\sin(2nx)}{2\sin(x)} \, dx \] 2. For the second integral: \[ \int_0^{\pi} \frac{\cos(2nx)\sin(x)}{\sin(2x)} \, dx = \int_0^{\pi} \frac{\cos(2nx)}{2\cos(x)} \, dx \] ### Step 5: Evaluate the integrals Both integrals have a period of \(2\pi\). Therefore, over the interval from \(0\) to \(\pi\), they will cancel out due to symmetry properties of sine and cosine functions. Thus, we conclude: \[ I_{n + \frac{1}{2}} = 0 \] ### Final Result The value of \(I_{n + \frac{1}{2}}\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

If I=int_(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0 , then I equals

Let I_(n) =int _(1) ^(e^(2))(ln x)^(n) dx (x ^(2)), then the value of 3I_(n)+nI_(n-1) equals to:

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If I (n)=int (0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I ( n...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |