Home
Class 12
MATHS
int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^...

`int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C`
where C is constant of integration. Then f (x) is equal to:

A

`-x`

B

`sqrt (1-x)`

C

x

D

`sqrt(1+x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^2 - x + 1}{x^2 + 1} e^{\cot^{-1}(x)} \, dx = f(x) e^{\cot^{-1}(x)} + C \] we will follow these steps: ### Step 1: Substitution Let \( t = \cot^{-1}(x) \). Then, we have: \[ x = \cot(t) \quad \text{and} \quad dx = -\frac{1}{1 + x^2} \, dt = -\frac{1}{1 + \cot^2(t)} \, dt = -\frac{1}{\csc^2(t)} \, dt = -\sin^2(t) \, dt \] ### Step 2: Rewrite the integral Now, we need to express \( x^2 - x + 1 \) and \( x^2 + 1 \) in terms of \( t \): \[ x^2 = \cot^2(t), \quad x = \cot(t) \] Thus, \[ x^2 - x + 1 = \cot^2(t) - \cot(t) + 1 \] \[ x^2 + 1 = \cot^2(t) + 1 = \csc^2(t) \] Now substituting these into the integral gives: \[ \int \frac{\cot^2(t) - \cot(t) + 1}{\csc^2(t)} e^t (-\sin^2(t)) \, dt \] ### Step 3: Simplify the integrand We know that \( \csc^2(t) = \frac{1}{\sin^2(t)} \), so: \[ \frac{\cot^2(t) - \cot(t) + 1}{\csc^2(t)} = (\cot^2(t) - \cot(t) + 1) \sin^2(t) \] This simplifies to: \[ (\cot^2(t) - \cot(t) + 1) \sin^2(t) = \cos^2(t) - \cos(t) \sin(t) + \sin^2(t) \] ### Step 4: Integrate Now we can write the integral as: \[ -\int (1 - \cot(t) + \sin^2(t)) e^t \, dt \] This can be separated into three integrals: \[ -\int e^t \, dt + \int \cot(t) e^t \, dt - \int \sin^2(t) e^t \, dt \] ### Step 5: Use Integration by Parts For the integral involving \( \cot(t) e^t \), we will use integration by parts: Let \( u = \cot(t) \) and \( dv = e^t dt \). Then \( du = -\csc^2(t) dt \) and \( v = e^t \). Applying integration by parts gives: \[ \int \cot(t) e^t \, dt = \cot(t) e^t - \int e^t (-\csc^2(t)) \, dt \] ### Step 6: Substitute back After evaluating the integrals, we substitute back \( t = \cot^{-1}(x) \) to express everything in terms of \( x \). ### Final Result After all substitutions and simplifications, we find that: \[ f(x) = x \] Thus, the final answer is: \[ f(x) = x \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If intf(x)dx=3[f(x)]^(2)+c (where c is the constant of integration) and f(1)=(1)/(6) , then f(6pi) is equal to

If intsqrt(1-cosx)f(x)dx=2/3(1-cosx)^(3//2)+c where c is constant of integration then f(x) equals:

If int(x)/(x+1+e^(x))dx=px+qln|x+1+e^(x)|+c , where c is the constant of integration, then p+q is equal to

Let inte^(x).x^(2)dx=f(x)e^(x)+C (where, C is the constant of integration). The range of f(x) as x in R is [a, oo) . The value of (a)/(4) is

If the value of integral int(x+sqrt(x^2 -1))^(2)dx = ax^3 - x + b(x^2 - 1)^(1/b), +C (where, C is the constant of integration), then a xx b is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |