Home
Class 12
MATHS
The value of Lim(x->0^+)(int1^cosx(cos^-...

The value of `Lim_(x->0^+)(int_1^cosx(cos^-1t)dt)/(2x-sin(2x))`is equal to

A

0

B

`-1`

C

`2/3`

D

`(-1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0^+} \frac{\int_1^{\cos x} \cos^{-1} t \, dt}{2x - \sin(2x)}, \] we will follow these steps: ### Step 1: Identify the Form of the Limit As \( x \to 0^+ \), both the numerator and the denominator approach 0. Thus, we have a \( \frac{0}{0} \) indeterminate form. **Hint:** Check if direct substitution leads to an indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator separately. ### Step 3: Differentiate the Numerator Using Leibniz's rule for differentiation under the integral sign, we differentiate the numerator: \[ \frac{d}{dx} \left( \int_1^{\cos x} \cos^{-1} t \, dt \right) = \cos^{-1}(\cos x) \cdot \frac{d}{dx}(\cos x) - 0 = \cos^{-1}(\cos x) \cdot (-\sin x). \] Since \( \cos^{-1}(\cos x) = x \) for \( x \) in the range \( [0, \frac{\pi}{2}] \): \[ \frac{d}{dx} \left( \int_1^{\cos x} \cos^{-1} t \, dt \right) = -x \sin x. \] ### Step 4: Differentiate the Denominator Now we differentiate the denominator: \[ \frac{d}{dx}(2x - \sin(2x)) = 2 - 2\cos(2x). \] ### Step 5: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0^+} \frac{-x \sin x}{2 - 2\cos(2x)}. \] ### Step 6: Substitute \( x = 0 \) Substituting \( x = 0 \): - The numerator becomes \( -0 \cdot \sin(0) = 0 \). - The denominator becomes \( 2 - 2\cos(0) = 2 - 2 = 0 \). We still have a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 7: Differentiate Again Differentiate the numerator and denominator again: 1. **Numerator:** \[ \frac{d}{dx}(-x \sin x) = -\sin x - x \cos x. \] 2. **Denominator:** \[ \frac{d}{dx}(2 - 2\cos(2x)) = 4\sin(2x). \] ### Step 8: Rewrite the Limit Again Now we have: \[ \lim_{x \to 0^+} \frac{-\sin x - x \cos x}{4\sin(2x)}. \] ### Step 9: Substitute \( x = 0 \) Again Substituting \( x = 0 \): - The numerator becomes \( -\sin(0) - 0 \cdot \cos(0) = 0 \). - The denominator becomes \( 4\sin(0) = 0 \). We still have a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule one more time. ### Step 10: Differentiate Again Differentiate the numerator and denominator again: 1. **Numerator:** \[ \frac{d}{dx}(-\sin x - x \cos x) = -\cos x - (\cos x - x \sin x) = -2\cos x + x \sin x. \] 2. **Denominator:** \[ \frac{d}{dx}(4\sin(2x)) = 8\cos(2x). \] ### Step 11: Rewrite the Limit Again Now we have: \[ \lim_{x \to 0^+} \frac{-2\cos x + x \sin x}{8\cos(2x)}. \] ### Step 12: Substitute \( x = 0 \) Again Substituting \( x = 0 \): - The numerator becomes \( -2\cos(0) + 0 \cdot \sin(0) = -2 \). - The denominator becomes \( 8\cos(0) = 8 \). ### Final Result Thus, the limit evaluates to: \[ \frac{-2}{8} = -\frac{1}{4}. \] Therefore, the value of the limit is \[ \boxed{-\frac{1}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->0) ( int_0 ^ (x^2) cost^2 dt)/( xsin x) is

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(xto1^(+))(int_(1)^(x)|t-1|dt)/(sin(x-1)) is:

(lim)_(x->0)(cos2x-1)/(cosx-1)

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

value of lim_(x->0)(1-cos^3x)/(xsinx*cosx) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of Lim(x->0^+)(int1^cosx(cos^-1t)dt)/(2x-sin(2x))is equal to

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |